G-3/379/22

Roll No.

III Semester Examination, January 2022

M.Sc.

MATHEMATICS

Paper IV (Operations Research-I)

Time : 3 Hours]

[Max. Marks : 80

Note : All questions are compulsory. Question Paper comprises of 3 Sections. Section A is objective type/multiple choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTIONA 1×10=10

(Objective Type/Multiple Choice Questions)

Choose the correct answer :

- Operation Research is the application of methods to arrive at the optimal solutions to the problem.
 - (a) Economical
 - (b) Scientific
 - (c) Both (a) and (b) both
 - (d) Artistic

P.T.O.

- **2.** Feasible solution satisfies :
 - (a) Only constraints
 - (b) Only non negative restrictions
 - (c) Both (a) and (b)
 - (d) None is correct
- **3.** In primal-dual solutions, the dual problem solution can be obtained by solving other problems classified as :
 - (a) Unrestricted problem
 - (b) Original problem
 - (c) Double problem
 - (d) Restricted problem
- **4.** In the dual simplex method the following conditions must be satisfied to start a simplex iteration :
 - (a) Optimality
 - (b) Feasibility
 - (c) Both optimality and feasibility
 - (d) None of the above

G-3/379/22

- **5.** The variation of the parametric linear programming problem will be :
 - (a) Linear (b) Non linear
 - (c) Both (a) and (b) (d) None is correct
- 6. Goal programming model is preferred when :(a) More than one objective is set to be achieved(b) Goals are multiple and in commensurable(c) Goals are satisfied in an ordinal sequence(d) None of the above
- **7.** The dummy source or destination in a transportation problem is added to :
 - (a) Balance the transportation problem
 - (b) Prevent solution from becoming degenerate
 - (c) Ensure that total cost does not exceed a limit
 - (d) The solution not be degenerate
- **8.** An assignment problem is a :
 - (a) Non-linear programming problem
 - (b) Linear programming problem
 - (c) A quadratic programming problem
 - (d) None of the above

G-3/379/22

P.T.O.

- **9.** An activity (*i*, *j*) is said to be critical if :
 - (a) E_i = L_i
 (b) E_j = L_j
 (c) E_j E_i = L_j L_i = t_{ij}
 (d) All of the above
- **10.** CPM/PERT techniques were developed first in :
 - (a) USA(b) UK(c) France(d) Japan

5×4=20

(Short Answer Type Questions)

SECTION B

Note : Answer the following questions.

Unit-I

1. Define the following :

(a) Feasible solution of a LPP

(b) Basic feasible solution to a LPP

Or

Obtain the dual of the linear programming problem :

 $Max Z = 2x_1 + 3x_2 + x_3$ **G-3/379/22**

Subject to :

 $4x_1 + 3x_2 + x_3 = 6$ $x_1 + 2x_2 + 5x_3 = 4$ and $x_1, x_2, x_3 \ge 0$

2. Solve the following problem by dual simplex method :

$$Max Z = -4x_1 - 6x_2 - 18x_3$$

Subject to :

 $x_{1} + 3x_{3} \ge 3$ $x_{2} + 2x_{3} \ge 5$ and $x_{1}, x_{2} \ge 0$

Or

Explain in short :

- (a) Advantage of Dual simplex method over simplex method.
- (b) Difference between simplex and dual simplex method.

G-3/379/22 P.T.O.

[6]

Unit-III

3. Write a short note on parametric linear programming.

Or

Define the following in Goal programming :

- (a) Differential weight
- (b) Goal equation
- (c) Bounds
- (d) Multiple Goals with Equal Priorities

Unit-IV

4. What is an unbalanced assignment problem and explain the method to solve it.

Or

Find the initial basic feasible solution of the following transportation problem using the North-West corner rule (method) :

	D_1	D_2	D_3	Available
S_1	2	7	4	5
S_2	3	3	1	8
S_3	5	4	7	7
S_4	1	6	2	14
Requirement	7	9	18	34
G-3/379/22				

[7] **Unit-V**

5. Explain the forward pass calculation for the network diagram.

Or

Explain the following terms in PERT/CPM :

(i) Earliest time

(ii) Latest time

SECTION C 10×5=50

(Long Answer Type Questions)

Note : Answer the following questions.

Unit-I

1. Solve the following LPP using simplex method :

 $Max Z = 3x_1 + 2x_2 + 5x_3$

Subject to constraints :

$$x_1 + 2x_2 + x_3 \le 430$$
$$3x_1 + 2x_3 \le 460$$
$$x_1 + 4x_2 \le 420$$
$$x_1, x_2, x_3 \ge 0$$

G-3/379/22

and

P.T.O.

Or

Solve the following LPP problem by Big-M method :

$$Max Z = x_1 + 2x_2 + 3x_3 - x_4$$

Subject to :

$$x_{1} + 2x_{2} + 3x_{3} = 15$$

$$2x_{1} + x_{2} + 5x_{3} = 20$$

$$x_{1} + 2x_{2} + x_{3} + x_{4} = 10$$
and
$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0$$
Unit-II

2. Use dual Simplex method to solve :

Min $Z = 3x_1 + x_2$

Subject to :

 $x_1 + x_2 \ge 1$ $2x_1 + 3x_2 \ge 2, \ x_1, x_2 \ge 0$ OrUse dual Simplex method to solve :

 $Min \ Z = 2x_1 + 3x_2 + 5x_3$

G-3/379/22

Subject to :

 $x_1 + 2x_2 + 3x_3 \ge 2$ $2x_1 - x_2 + x_3 \ge 3$ and $x_1, x_2, x_3 \ge 0$

Unit-III

3. For t≥ 0 determine the critical values of t for which the solution of the following parametric L.P.P. remains optimal basic feasible :

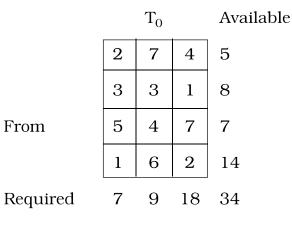
Max Z = $(3 - 6t) x_1 + (2 - 2t) x_2 + (5 + 5t) x_3$

Subject to :

 $x_{1} + 2x_{2} + x_{3} \le 40$ $3x_{1} + 2x_{3} \le 60$ $x_{1} + 4x_{2} \le 30$ and $x_{1}, x_{2}, x_{3} \ge 0$

Or

Write a short note on interior point Algorithm and Karmakar's contribution in this.


G-3/379/22

P.T.O.

G-3/379/22

[10] **Unit-IV**

4. Sove the following transportation problem in which cell entries represent unit costs.

Or

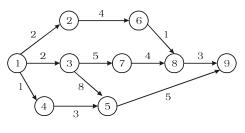
Solve the following assignment problem :

		J_1	J_2	J_3	J_4
	А	10	14	22	12
	В	16	10	18	12
Person	С	8	14	8	14
	D	20	8	16	6

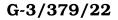
[11]

Unit-V

5. A project has the following time schedule :


Activity	Time in Months			
1-2	2			
1-3	2			
1-4	1			
2-5	4			
3-6	8			
3-7	5			
4-6	3			
5-8	1			
6-9	5			
7-8	4			
8-9	3			

Construct PERT network and compute :


- (i) Compute float for each activity.
- (ii) Critical path and its duration.

Or

Find the critical path and calculate the slack time for each event for the following PERT diagram.

11/50