G-3/376/22

Roll No.

III Semester Examination, January 2022

M.Sc.

MATHEMATICS

Paper I

(Integration Theory and Functional Analysis-I)

Time: 3 Hours] [Max. Marks: 80

Note: All questions are compulsory. Question Paper comprises of 3 Sections. Section A is objective type/multiple choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTIONA

1×10=10

(Objective Type/Multiple Choice Questions)

Choose the correct answer:

- **1.** Two measure V_1 and V_2 on $(X_1\beta)$ are said to be mutually singular ($ee\ V_1\perp V_2$) if these are disjoint measurable set A and B with $X=A\cup B$ such that :
 - (a) $V_1(A) = V_2(B) \neq 0$
 - (b) V_1 (B) = V_2 (A) = 0
 - (c) $V_1(A) = 0$ but $V_2(B) \neq 0$
 - (d) None of the above

2. Let (X, β, μ) be a σ finite measure space and let v be a measure define on β which is absolutely continuous with respect of μ then there is a nonnegative measurable function f such that for each set E in β we have

$$vE = \int_{E} f du$$

The above statement is:

- (a) Hahn Decomposition theorem
- (b) Radon Nikodyn theorem
- (c) Lebesgue decomposition
- (d) Riesz representation theorem
- **3.** The *x*-cross–section of any measurable subset E of $X \times Y$ is define by :
 - (a) $Ex = \{x : (x, y) \in E\}$
 - (b) $Ey = \{y : (x, y) \in E\}$
 - (c) $Ex = \{y : (x, y) \in E\}$
 - (d) $Ey = \{x : (x, y) \in E\}$
- **4.** If the derivative of two absolutely continuous function are equivalent then the :
 - (a) Function differ by a constant
 - (b) Function differ by a variable
 - (c) Function is not constant
 - (d) None of the above

G-3/376/22

- **5.** A measure μ is called regular measure if :
 - (a) μ is inner regular
 - (b) μ is outer regular
 - (c) μ is both inner and outer regular
 - (d) None of the above
- **6.** A set E is called a set if it can be obtained from closed and open set by using a finite or an enumerable number of union and intersection operation.
 - (a) Borel set
- (b) Baire set
- (c) Both (a) and (b) (d) None of these
- **7.** Which of the following space is not banach space?
 - (a) R^n
 - (b) Cⁿ
 - (c) C(X), space of all bounded continuous scalar valued functions defined on X
 - (d) (10, 1), space of real valued continuous function on [0, 1]
- **8.** Consider the following statements :
 - (i) Every finite dimensional subspace of normed linear space is closed.
 - (ii) Let X be normed linear space then X is compact if X is finite dimensional

- (a) (i) is true and (ii) is false
- (b) (i) is false and (ii) is true
- (c) (i) and (ii) both are false
- (d) (i) and (ii) both are true
- **9.** Let $T: X \to Y$ where X and Y are normed linear space such that $||T_x|| \le M ||x|| \forall x \in x, \mu > 0$ then:
 - (a) T is linear transformation
 - (b) T is bounded
 - (c) T is continuous
 - (d) All of the above
- **10.** Let $\{x_n\}$ be a weakly convergent sequence in a normed linear space X *i.e.*, $x_n \xrightarrow{0} x$ then :
 - (a) The sequence $||x_n||$ is convergent
 - (b) The sequence $||x_n||$ is unique
 - (c) The sequence $||x_n||$ is bounded
 - (d) None of the above

SECTION B

 $4 \times 5 = 20$

(Short Answer Type Questions)

Note: Answer the following questions.

Unit-I

- **1.** Let v be a signed measure on measurable space (X, β) then there is a positive set A and negative
- G-3/376/22

set B such that $X = A \cup B$ and $A \cap B = \phi$, v assume almost one of the value $+ \infty$ and $- \infty$.

Or

Let F be a bounded linear function on L^P (μ) with $1 < P < \infty$ then there is a unique element $g \in L^q$ such that $F(f) = \int f \cdot g \ d\mu$ we have $\|F\| = \|g\|_q$.

Unit-II

2. Show that the intersection of two σ -compact is a σ -compact.

Or

Varify Fubini theorem for $\int_0^1 dx \int_0^1 \frac{x^2 - y^2}{x^2 + y^2} dy = \int_0^1 dy \int_0^1 \frac{x^2 - y^2}{x^2 + y^2} dx$.

Unit-III

3. Let μ be a finite measure defined on σ algebra a which contains all the Baire sets of a locally compact space X, if μ is inner regular, show that it is regular.

Or

Let μ be a Baire measure on X then show that there is a unique quasi regular Baire measure $\overline{\mu}$ on X and a unique inner regular Baire measure

P.T.O.

 $\underline{\mu}$ on X such that $\mu\epsilon = \overline{\mu}\epsilon = \underline{\mu}\epsilon$ for every σ bounded Baire set E.

Unit-IV

4. Prove that every complete subspace of normed linear space is closed .

Or

Prove that the linear space R^n equiped with the norm given by :

$$\|x\|_2 = \left(\sum_{i=1}^n |\varepsilon_i|^2\right)^{1/2}; x = (\varepsilon_1, \varepsilon_2 \dots \varepsilon_n) \in \mathbb{R}^n$$

is a real Banach space.

Unit-V

5. Prove that the Dual space of $l^p(n)$; $1 is <math>l^p(n)$ where $1 < q < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$.

Or

Let X and Y be normed linear spaces and $T: X \to Y$ be any linear transformation if X is finite dimensional then T is continuous.

SECTION C $10 \times 5 = 50$

(Long Answer Type Questions)

Note: Answer the following questions.

G-3/376/22

Unit-I

1. Let E be a measurable set such that $0 < vE < \infty$ then there is a positive set A contain in E with vA > 0.

Or

State and prove extension theorem (caratheodory).

Unit-II

2. State and prove Lebesque stieltjes integral.

Or

Define bounded variation. Prove that every absolutely continuous function is a bounded variation.

Unit-III

3. Let μ be a measure defined on σ algebra a containing the Baire sets. Assume that either μ is quasi regular or μ is inner regular. Then for each $E \in a$ with $\mu(E) < \infty$, there is a Baire set B with $\mu(E\Delta B) = 0$.

Or

Let μ^* be a topologically regular outer measure on X. Then each Borel set is μ^* measurable.

Unit-IV

4. Prove that all norms are equivalent on a finite dimensional space.

Or

State and prove Reize's lemma.

Unit-V

5. Let X and Y be normed space $T: X \to Y$ is compact linear operator suppose that sequence $\{x_n\}$ in X is weakely convergent say $x_n \xrightarrow{\omega} x$ then $\{T(x_n)\}$ is strongly convergent in Y and has the limit $Y = T_x$.

Or

Let X and Y be normed linear spaces, then B(X, Y) the set of all bounded linear transformation from X into Y is a normed linear space. More over if Y is a Banach space, then B(X, Y) is also a Banach space.

* * * * * C * * * * *