H-2-31-22

Roll No.

II Semester Examination, 2022

M.Sc.

MATHEMATICS

Paper II

(Real Analysis-II)

Time: 3 Hours [Max. Marks: 80

Note: All Questions are Compulsory. Question Paper comprises of 3 sections. Section 'A' is Objective type/Multiple Choice questions with no internal Choice. Section 'B' is Short answer type with internal Choice. Section 'C' is Long answer type with internal Choice.

Section 'A' $1 \times 10 = 10$ (Objective Type Questions)

Choose the correct answer:

- **1.** A function *f* is Riemann intregable on [*a*, *b*] iff :
 - (a) Only $\int_{a}^{-b} f dx$ exist
 - (b) Only $\int_{-a}^{b} f \, dx$ exist
 - (c) $\int_{-a}^{b} f \, dx \neq \int_{a}^{-b} f \, dx$
 - (d) $\int_{-a}^{b} f \, dx = \int_{a}^{-b} f \, dx$

2. A function $f \in R(\alpha)$ on [a, b] and m, M are lower and upper bounds of the function f respectively, then:

(a)
$$m [\alpha(b) - \alpha(a)] \ge M [\alpha(b) - \alpha(a)]$$

(b)
$$m \left[\alpha(b) - \alpha(a) \right] \leq M \left[\alpha(b) - \alpha(a) \right]$$

(c)
$$m \left[\alpha(a) - \alpha(b) \right] \leq M \left[\alpha(a) - \alpha(b) \right]$$

(d)
$$m \left[\alpha(a) - \alpha(b)\right] \ge M \left[\alpha(a) - \alpha(b)\right]$$

- **3.** The σ -algebra generated by the family of all open sets in R called :
 - (a) Measurable sets
 - (b) Regular Sets
 - (c) Borel sets
 - (d) Algebra of sets
- **4.** If *A* and *B* are two sets with $A \subset B$, then $m^*(A) \le m^*(B)$. This property is :
 - (a) Countability
 - (b) Monotonicity
 - (c) Countable additivity
 - (d) Translation invariant

- **5.** Consider the following statements :
 - The Lebsegue measure is complete
 - (ii) The Lebsegue measure restricted to the σ-algebra of Borel set is not complete
 - (a) (i) is true and (ii) is false
 - (b) (i) is false and (ii) is true
 - (c) (i) and (ii) both are false
 - (d) (i) and (ii) both are true
- **6.** Cantor set has measures:
 - (a) $\frac{1}{3}$

(b) 1

(c) 0

- (d) $\frac{2}{3}$
- **7.** Consider the following statements :
 - (i) If a function is monotonic, then it has a derivative almost everywhere.
 - (ii) If a function is bounded variation, then it has derivative almost everywhere.
 - (a) (i) is true and (ii) is false
 - (b) (i) is false and (ii) is true
 - (c) (i) and (ii) both are false
 - (d) (i) and (ii) both are true

- **8.** If $S = \{x : D^+ f(x) = \infty\}$. Then S has a measure :
 - (a) 0

(b) 1

(c) ∞

- (d) None of these
- **9.** If $f(x) \in L^2$ and $g(x) \in L^2$, then:

 - (a) $f(x) g(x) \in L^2$ (b) $f(x) g(x) \in L^{1/2}$

 - (c) $f(x) g(x) \in L^1$ (d) None of these
- **10.** A function of bounded variation need not be:
 - (a) Bounded
 - (b) Continuous
 - (c) Monotonic function
 - (d) Total variation

Section 'B' $4 \times 5 = 20$

(Short Answer Type Questions)

Note: Attempt one question from each unit.

Unit-I

- **1.** Let f be continuous function and α monotonically increasing on [a, b] then prove that $f \in R(\alpha)$ on [a, b].
- H-2-31-22

Or

Define rectifiable curve. Let $\gamma:[a,b]\to R^k$ be a curve. If $c\in(a,b)$ then prove that $:\Lambda_\gamma(a,b)=\Lambda_\gamma(a,c)+\Lambda_\gamma(c,b)$.

Unit-II

2. Prove that the outer measure of an interval is its length.

Or

Let E_n be countable collection sets of real numbers. Then show that

$$m^* \bigcup_{n=1}^{\infty} E_n \leq \sum_{n=1}^{\infty} m^*(E_n)$$

Unit-III

3. State and prove Fatau'slemma.

Or

If A and B are disjoint measurable subsets of E, then prove that

$$\int_{A \cup B} f = \int_{A} f + \int_{B} f$$

H-2-31-22

P.T.O.

Unit-IV

4. Define four derivatives and find all four Dini Derivative of the following Let $f: R \to R$ be defined by

$$f(x) = \begin{cases} x \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

Or

If f is absolutely continuous on [a, b] and f = 0 almost everywhere then show that f is a constant function.

Unit-V

5. Let $1 \le p \le \infty$ and let $f, g \in L^p(\mu)$. Then

$$f + g \in L^p(\mu)$$

and $||f+g||_{p} \le ||f||_{p} + ||g||_{p}$

Or

Define L^P space. If $f \in L^P[a, b]$ and $g \le f$, then $g \in L^P[a, b]$.

Section 'C'

 $10 \times 5 = 50$

(Long Answer Type Questions)

Unit-I

1. Explain the "Riemann integral is seen to be a special case of the Riemann-Stieltjes integral." Let $f, \alpha : [a, b] \to R$ be bounded functions and α be monotone increasing. If P^* is α refinement of partition P of the interval [a, b], then prove that :

$$L(P, f, \alpha) \leq L(P^*, f, \alpha)$$
 and

$$U(P^*, f, \alpha) \le U(P, f, \alpha)$$

Or

If $f \in R(\alpha_1)$ and $f \in R(\alpha_2)$, then prove that $f \in R(\alpha_1 + \alpha_2)$ and

$$\int_a^b f d(\alpha_1 + \alpha_2) = \int_a^b f d\alpha_1 + \int_a^b f d\alpha_2$$

Unit-II

2. Define Borel set. Prove that every Borel set in R is measurable.

Or

Define measurable function. If f and g be measurable functions on measurable set E then show that f + g is also measurable on E.

Unit-III

3. Explain extension of a measure. If $A \in \alpha$ (algebra of sets) then prove that

$$\mu * (A) = \mu(A)$$

Or

State and prove Lebesgue Dominated convergence theorem.

Unit-IV

4. State and prove Vitali's covering Lemma.

Or

Let f be a Lebesgue integrable function on [a, b] then the indefinite integral of f is a continuous of bounded variation on [a, b].

Unit-V

5. State and prove Minkowski's inequality.

Or

State and prove Riesz-Fischer theorem.