H-2-32-22

Roll No.

II Semester Examination, 2022

M.Sc.

MATHEMATICS

Paper III

(General and Algebraic Topology)

Time: 3 Hours [Max. Marks: 80

Note: All Questions are Compulsory. Question Paper comprises of 3 sections. Section 'A' is Objective type/Multiple Choice questions with no internal Choice. Section 'B' is Short answer type with internal Choice. Section 'C' is Long answer type with internal Choice.

Section 'A' $1 \times 10 = 10$ (Objective Type Questions)

Choose the correct answer:

- **1.** Which of the following space is not first countable?
 - (a) Discrete space
 - (b) (R, U) space
 - (c) Metric space
 - (d) Co-countable topology on a uncountable set

P.T.O.

- **2.** Which of the following space is not a Hausdorff space?
 - (a) (X, ∞)
 - (b) (X, I) with only two points
 - (c) Co-finite topology on an infinite set
 - (d) (*R*, *U*) space
- **3.** Which of the following statement is false?
 - (a) The diagonal map is one-one
 - (b) The product of two connected spaces is *C* connected space
 - (c) Projection mappings are open
 - (d) Projection mappings are closed
- **4.** Which of the following statements is false?

X topological space (X, y) is compact iff:

- (a) every open cover has a finite subcover
- (b) every basic open cover has a finite subcover
- (c) every sub-basic open cover has a finite subcover
- (d) Compactness is a hereditary property

H-2-32-22

5. Which of the following statement is false?

- (a) Space (R, U) is metrizable
- (b) Metrizability is a hereditary property
- (c) [0, 1] is not metrizable
- (d) Hillbert cube is metrizable

6. Which of the following statement is false?

If $f_{\lambda}: X \to Y_{\lambda}$ for each $\lambda \in \Lambda$, then the evaluation map $e: X \to XY_{\lambda}$ is :

- (a) continuous iff each f_{λ} is continuous
- (b) open iff each f_{λ} is open
- (c) one-one iff $\exists = \{f_{\lambda} : \lambda \in n\}$ distinguishes points
- (d) open iff $\exists = \{f_{\lambda} : \lambda \in \Lambda\}$ distinguishes points and closed sets

7. A net in a discrete toplogical space converges to:

- (a) a unique point
- (b) at least two points
- (c) many points
- (d) none of the above

8. Which of the following is not true?

- (a) $\{X\}$ is a filter on X
- (b) If F_0 is a non-empty subset of X, Then $\exists = \{F \mid F \supset F_0\}$ is a filter on X
- (c) Union of two filters on X is a filter on X
- (d) A filter has F, P
- **9.** Which of the following is false?
 - (a) The relation of path homotopy is an equivalence relation
 - (b) The fundamental group of the figure eight is abelian
 - (c) In a simply connected space *X*, any two paths having the some initial and final points are path homotopic
 - (d) The fundamental group of the double torus T_2 is not abelian
- **10.** Which of the following is not true?
 - (a) The product of two covering maps is not a covering map in general

H-2-32-22

[6]

(b) The map $p: R \to S'$ given by the equation

$$p(x) = (\cos 2\pi x, \sin 2\pi x)$$

is a covering map

- (c) If X is path connected and x_0 and x_1 are two points of X, then $\pi_1(X, x_0)$ is isomorphic to $\pi_1(X, x_1)$
- (d) In a simply connected space X, any two paths having the same initial and final points are path homotopic.

Section 'B' $4 \times 5 = 20$

(Short Answer Type Questions)

Note: Attempt one question from each unit.

Unit-I

1. Prove that the property of being a regular space is a topological property.

Or

Show that the product of two separable spaces is a separable space.

Unit-II

2. State and prove Alexander sub-base lemma.

Or

If $y_0 \in Y$ be a fixed element of Y and let $A = X \times \{y_0\}$. Then prove that π_X/A is an open mapping.

Unit-III

3. State and prove Tychonoff Embedding theorem.

Or

A space X is Tychonoff iff X is homeomorphic to a subspace of a cube.

Unit-IV

4. Prove that every filter on a set *X* is contained in an ultra filter on *X*.

Or

Prove that a topological space (X, y) is compact iff each net in X has a cluster point.

P.T.O.

H-2-32-22

H-2-32-22

Unit-V

- **5.** Define the following :
 - (i) Covering space
 - (ii) Fundamental group of a topological space

Or

If $h: (X, x_0) \to (Y, y_0)$ is a homeomorphism of X with Y, then prove that h_* is an isomorphism of $\pi_1(X, x_0)$ with $\pi_1(Y, y_0)$.

Section 'C' $10 \times 5 = 50$

(Long Answer Type Questions)

Note: Attempt one question from each unit.

Unit-I

1. Prove that $X\{X_{\lambda}: \lambda \in \Lambda\}$ is Hausdorff iff each coordinate space X_{λ} is Hausdorff.

Or

Prove that $X \{X_{\lambda} : \lambda \in \Lambda\}$ is regular iff each coordinate space X_{λ} is regular.

Unit-II

2. Prove that $X \times Y$ is connected iff X and Y are connected.

Or

 $X\{X_{\lambda}: \lambda \in \Lambda\}$ is compact iff each X_{λ} is compact.

Unit-III

3. State & prove Urysohn's Metrization theorem.

Or

State and prove smirnor metrization theorem.

Unit-IV

4. Prove that a topological space (*X*, *Y*) is Hausdorff iff every set in *X* can converge to at most one point.

Or

Prove that a topological space (X, Y) is Hausdorff iff every convergent filter in X has a unique limit.

Unit-V

5. Prove that the fundamental group of the circle is infinite cyclic.

 \mathbf{Or}

State and prove fundamental theorem of Algebra.