H-2-33-22

Roll No.

II Semester Examination, 2022

M.Sc.

MATHEMATICS

Paper IV

(Advanced Complex Analysis-II)

Time: 3 Hours]

[Max. Marks : 80

Note : All Questions are Compulsory. Question Paper comprises of 3 sections. Section 'A' is Objective type/Multiple Choice questions with no internal Choice. Section 'B' is Short answer type with internal Choice. Section 'C' is Long answer type with internal Choice.

> Section 'A' $1 \times 10 = 10$ (Multiple Choice Questions)

Answer the following one sentence :

- **1.** Give an expression of Gauss formula for \overline{z} .
- **2.** Define Riemann zeta function $\zeta(z)$.
- **3.** Define fixed end point homotopic curves.
- **4.** Define complete analytic function.
- **5.** Define mean value property for a continuous function in *C*.

P.T.O.

- **6.** Define Green's function.
- 7. Define Rank of an analytic function.
- 8. Define Laudau's constant.
- **9.** Give statement of Great Picard's theorem.
- **10.** Define Lacunary value of a function *f*(*z*).

Section 'B' $4 \times 5 = 20$

(Short Answer Type Questions)

Note : Attempt one question from each unit.

Unit–I

1. Find residue of \overline{z} at poles.

Or

If $|z| \leq 1$ and $p \geq 0$. Then prove that

 $|1 - E_p(z)| \le |z|^{p+1}$

Unit–II

2. Find the regions D_1 and D_2 so that the function

$$f_2(z) = i \sum_{n=0}^{\infty} \left(\frac{z+i}{i}\right)^n$$
 is analytic continuation of

$$f_1(z) = \int_0^\infty e^{-zt} dt.$$

H-2-33-22

[3]

Or

Let $\gamma : [0, 1] \to C$ be a path and let $\{(f_t, D_t) : 0 \le t \le 1\}$ be an analytic continuation along γ . For $0 \le t \le 1$, let R(t) be the radius of convergence of the power series expansion of f_t about $z = \gamma(t)$. Then prove that $R(t) = \infty$ or $R : [0, 1] \to (0, \infty)$ is continuous.

Unit–III

3. Prove that the poisson's Kernel

$$P_r(\theta) = \operatorname{Re}\left(\frac{1+re^{i\theta}}{1-re^{i\theta}}\right)$$

Or

If $u: G \rightarrow IR$ is a continuous function which has the mean value property, then prove that u is harmonic.

Unit–IV

4. Let $Re z_n > -1$, then prove that the series $\Sigma \log (1 + z_n)$ converges absolutely iff the series Σz_n converges absolutely.

P.T.O.

H-2-33-22

\mathbf{Or}

If f(z) is an entire function of finite order with M(r)= max | f(z) | on | z | = r and n(r) be the number of zeros of f(z) in $| z | \le r$ then prove that

 $\log M(2r) \ge n(r) \log 2$

Unit–V

5. Suppose *g* is analytic on B(0, R), g(0) = 0, $\mid g'(0) \mid = \mu > 0$ and $\mid g(z) \mid \le M$ for all *z*. Then prove that

$$g[B(0, R)] \supset B\left(0, \frac{R^2 \mu^2}{\sigma M}\right)$$

Or

Give statement of Biberbach conjecture.

Section 'C' 10 × 5 = 50

(Long Answer Type Questions)

Note : Attempt one question from each unit.

Unit–I

1. Prove that

$$\sqrt{\pi}\sqrt{(2z)} = 2^{2z-1} \left[\overline{z} \left(z + \frac{1}{2} \right) \right]$$

H-2-33-22

[5]

Or

State and prove Runge's theorem.

Unit–II

2. State and prove schwartz's Reflection principle.

Or

Let $\gamma : [0, 1] \to C$ be a path from a to *b* and let $\{(f_{t_1}D_t) \mid 0 \le t \le 1\}$ be an analytic. Continuation along γ . There is a number $\epsilon > 0$ such that if $\sigma : [0, 1] \to C$ is any path from a to *b* with $| \gamma(t) - \sigma(t) | < \epsilon$ for all *t* and if $\{(g_t, B_t) : 0 \le t \le 1\}$ is any analytic continuation along σ with $[g_0]_a = [f_0]_a$, then prove that $[g_1]_b = [f_1]_b$.

Unit–III

- **3.** Let $D = \{z : |z| < 1\}$ and suppose that $f : \partial D \to R$ is a continuous function. Then prove that there a continuous function $u : \overline{D} \to R$ such that :
 - (a) u(z) = f(z) for z in ∂D ;
 - (b) u is harmonic in D.

Also u is unique and defined by

$$u(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f(e^{it}) dt$$

for $0 \le r < 1, \ 0 < \theta \le 2\pi.$

Or

State and prove Harnack's theorem.

Unit–IV

4. Let (*X*, *d*) be a compact metric space and let $\{g_n\}$ be a sequence of continuous functions from *X* into *C* such that $\sum g_n(x)$ converges absolutely and uniformly for *x* in *X*. Then prove that the product

$$f(x) = \prod_{n=1}^{\infty} [1 + g_n(x)]$$

Converges absolutely and uniformly for x in X, also there is/an integer n_0 such that

f(x) = 0 iff $g_n(x) = -1$ for some

n, $1 \Sigma n \le n_0$.

Or

State and prove Borel's theorem.

Unit–V

5. State and prove Bloch's theorem.

Or

State and prove little picard's theorem.

####