Roll No.

IV Semester Examination, 2022

M.Sc.

MATHEMATICS

Paper I

(Functional Analysis-II)

Time: 3 Hours]

[Max. Marks: 80

Note: All questions are compulsory. Question Paper comprises of 3 sections. Section **A** is objective type/multiple choice questions with no internal choice. Section **B** is short answer type with internal choice. Section **C** is long answer type with internal choice.

SECTIONA

 $1 \times 10 = 10$

P.T.O.

(Objective Type/Multiple Type Questions)

Choose the correct answer:

- **1.** Let *X* and *Y* be a banach spaces and $T \in B(X, Y)$. It *T* is onto, then there exists K > 0 such that for every $y \in Y$, there exists $x \in X$ such that :
 - (a) $T_x = y || x || \ge K || y ||$
 - (b) $T_x = ||y|| x \le K ||x||$
 - (c) $T_x = y || x || \le K || y ||$
 - (d) $T_x = y || x || \le K || x || || y ||$

- **2.** Let N and N' be normed linear space and DCN then a linear transformation $T: D \to N'$ is closed if and only if G_T is :
 - (a) Open

- (b) Closed
- (c) Both (a) and (b) (d) None of these
- **3.** A normed linear space X is reflexive, if :
 - (a) $T(X) = X^{**}$
- (b) T(X) = X
- (c) $T(X) = X^*$
- (d) $T(X) = X^{***}$
- - (a) Uniform convergence
 - (b) Compact
 - (c) Bounded
 - (d) None of the above
- **5.** Let *M* be a linear subspace of Hilbert space *X* then *M* is closed of and only if :
 - (a) $M \neq M^{\perp \perp}$
- (b) $M = M^{\perp}$
- (c) $M \neq M^{\perp}$
- (d) $M = M^{\perp \perp}$

H-4/23/22

- **6.** A normed space is an inner product space if and only if the norm of the normed space satisfy the equation.
 - (a) $||x + y|| \le ||x|| + ||y||$
 - (b) $|\langle x, y \rangle| \le ||x|| . ||y||$
 - (c) $||x + y||^2 + ||x y||^2 = 2 ||x||^2 + 2 ||y||^2$
 - (d) None of the above
- **7.** A Banach space *X* is said to be reflexivive if it is isometrically isomorphic to :
 - (a) X*

(b) X**

(c) X***

- (d) All of these
- **8.** If *M* is a subspace of the Hilbert space *H* then for any $x \in H$ there exists a unique $y \in M$ and $z \perp M$ such that x = y + z the vector y is called :
 - (a) Projection of x onto M
 - (b) Linear of x onto M
 - (c) Bounded linear of x onto M
 - (d) None of the above
- **9.** Which is a incorrect statement?
 - (a) Every positive operator is self adjoint
 - (b) Every self adjoint operator is normal
 - (c) Every normal operator is unitary
 - (d) Every unitary operator is normal

- **10.** If *T* is a positive operator on a Hilbert space H then:
 - (a) I T is non singular
 - (b) I + T is non singular
 - (c) I + T is singular
 - (d) None of the above

SECTION B

 $4 \times 5 = 20$

(Short Answer Type Questions)

Note: Attempt *one* question from each unit.

Unit-I

1. Let *X* be a Banach space over the field *K*. If $\{T_n\} \in B(X, Y)$ be a sequence such that $\lim_{n \to \infty} T_n \ x = Tx$ where $x \in X$ exist then prove that $T \in B(X, Y)$.

Or

Let X and Y are two Banach space and if T is linear transformation from X onto Y then T is continuous if and only if graph of T i.e., T_G is closed.

Unit-II

2. State and prove closed range theorem.

Or

Let X and Y be normed spaces $T: X \to Y$ is compact linear operator. Suppose that sequence

H-4/23/22

 $\{x_n\}$ in X is weakely convergent salf $x_n \xrightarrow{0} x$ then $[T(x_n)]$ is strongly convergent in Y and has the limit $y = T_x$.

Unit-III

3. Let $\{e_1, e_2, \dots, e_n\}$ is a finite othonormal set in Hilbert space H if $x \in H$ then $\sum_{i=1}^n |xe_i|^2 \le ||x||^2$ further $x - \sum (x_1 e_i) e_i \perp e_j$ for each j.

Or

State and prove schwartz inequality.

Unit-IV

4. Let M be a closed linear subspace of a Hilbert space H then $H = M \oplus M^{\perp}$.

Or

Let H is a Hilbert space then show that H^* is also hilbert space with respect to the inner product defined by

$$\langle f_x, f_y \rangle = \langle y, x \rangle$$

Unit-V

5. Prove that $T \in B(X)$ is unitary if and only if it is an isometric isomorphism of X onto itself.

Or

Let A_1 and A_2 are self adjoint operators α and β are real numbers then show that $\alpha A_1 + \beta A_2$ also self adjoint.

H-4/23/22

P.T.O.

SECTION C

 $10 \times 5 = 50$

(Long Answer Type Questions)

Note: Attempt *one* question from each unit.

Unit-I

1. State and prove uniform boundedness theorem.

Or

Let X and Y are Banach space and T is linear transformation from X onto Y then T is an open mapping.

Unit-II

2. Let N be a arbitrary normed linear space to each vector $x \in N$ then \exists scalar value function F_x define on N^{**} such that $F_x(f) = f(x) \ \forall f \in N^*$ then show that F_x is continuouse linear function and the mapping $\psi: x \to F_x$ is an isometric isomorphism.

Or

State and prove Hahn Banach theorem for normed linear space.

Unit-III

3. If *M* and *N* be closed linear subspace of hilbert space *H* such that $M \perp N$ and $M \cap N = \{0\}$, then so that M + N is also closed linear subspace of *H*.

H-4/23/22

[7]

Or

A closed convex subset C of a Hilbert space H contains a unit vector of smallest Norm.

Unit-IV

4. State and prove Riesz representation theorem.

Or

Let $T: X \to Y$ be a linear operator. If T is compact so its adjoint operator $T^X: Y \to X'$.

Unit-V

5. Let S and T be elements of class of normal operator N (H) and suppose that $ST^* = T^*S$ then S + T and ST are in N (H).

Or

Let H be a complete Hilbert space and $T \in B(H)$ then the following statements are equivalent:

- (a) T is normal
- (b) T^* is normal
- (c) $||T^{\forall} x|| = ||T_x|| \forall x \in H$