H-4/25/22

Roll No.

IV Semester Examination, 2022

M.Sc.

MATHEMATICS

Paper III (WAVELETS-II)

Time: 3 Hours]

[Max. Marks: 80

Note: All questions are compulsory. Question Paper comprises of 3 sections. Section **A** is objective type/multiple choice questions with no internal choice. Section **B** is short answer type with internal choice. Section **C** is long answer type with internal choice.

SECTIONA

 $1 \times 10 = 10$

(Very Short Answer Type Questions)

- **1.** Define low pass filter.
- **2.** Define frame operator.
- **3.** Write the statement of Balian low the orem for frames.
- **4.** Define Dual light frame for $L^2(R)$.
- **5.** What do you mean by Fast Fourier transform? (write in 2-3 lines only).

P.T.O.

- **6.** Define characterization of MRA wavelets.
- **7.** Write the condition that "a frame is light".
- **8.** What do you mean by a projection of $f \in L^2(R)$ onto V_i .
- **9.** Write an expression of window function W_j to express discrete version of cosine transform.
- **10.** Define translation and dilations of a single function $\psi \in L^2(R)$.

SECTION B

 $4 \times 5 = 20$

(Short Answer Type Questions)

Note: Attempt one question from each unit.

Unit-I

1. Suppose that $\{e_j : j = 1, 2, 3\}$ is a system of vectors in a Hilbert space H satisfying condition

$$||f||^2 = \sum_{j=1}^{\infty} |\langle f, e_j \rangle|^2$$
 holds for all $f \in H$.

If $||e_j|| \ge 1$ for j = 1, 2, 3...

Show that $\{e_j : j = 1, 2, 3....\}$ is an orthogonal basis for H.

Or

If ψ is an orthonormal wavelet and $|\psi|$ is continuous at zero, then show that $\psi(0) = 0$.

H-4/25/22

Unit-II

2. Let P_j be the projection onto V_j , the show that $||P_jf-f||_2^2 = ||f||^2 - ||P_jf||_2^2 \to 0 \text{ as } j \to \infty.$

Эr

Let m_0 be a 2π -periodic function in the class C^n , $n \in \mathbb{N}$, which satisfies the condition $m_0(0) = 1$ and $|m_0(\xi)|^2 + |m_0(\xi + \pi)|^2 = 1$ for a.e., $\xi \in \mathbb{R}$. Let $\phi(\xi) = \prod_{j=1}^{\infty} m_0(2^{-j}\xi)$, then show that ϕ and all its derivative upto order n, in the sense of distributions belong to $L^2(\mathbb{R})$.

Unit-III

3. If $\{\phi_j : j \in J\}$ is a frame on a Hilbert space H with frame bounds A and B. Then the collection

$$\{\tilde{\phi}_j \equiv S^{-1}(\phi_j) : j \in J\}$$

is also a frame for H with frame bound $\frac{1}{B}$ and $\frac{1}{A}$, prove it.

Or

Show that if $0 < \epsilon \le \frac{\pi}{3}$, then the system $\{(\psi^{\epsilon})_{j,k} : j, k \in Z\}$ is a frame for $H^2(R)$.

P.T.O.

Unit-IV

4. If the function E_k where E_k (r) = r_k are the analogues of the exponentials $e^{2\pi i k \theta}$ in the case of classical Fourier series. Then show that $\left\{\frac{1}{\sqrt{N}} E_k : k = 0, 1 \dots N - 1\right\}$ is an orthonormal basis for $L^2(\sqrt{N})$.

Or

Show that \tilde{y}_k equals $\frac{1}{2\pi i}e^{\pi i\frac{k}{2N}}$ times the *DCT* coefficients α_k (N) for the function f.

Unit-V

5. Write in details "How the Haar wavelet works for doing the decomposition algorithm."

Or

Explain reconstruction algorithm for wavelets in one dimensional case.

SECTION C $10 \times 5 = 50$

(Long Answer Type Questions)

Note: Attempt one question from each unit with internal choice.

Unit-I

1. Show that

$$\sum_{j \in \mathbb{Z}} 2^{-j} \int_{\mathbb{R}} |\hat{f}(2^{-j}\xi) \hat{\psi}(\xi)|$$

$$\sum_{k \neq 0} |\hat{f}[2^{-j}(\xi + 2k\pi)] \hat{\psi}(\xi + 2k\pi)| d\xi < \infty.$$
Or

Let $\psi \in L^2(R)$ be such that $|\psi| = \chi_k$ for some measurable $k \in R$. Then show that ψ is an MSF wavelet if and only if

$$\sum_{j\in \mathbb{Z}} |\mathring{\psi}(2^{j}\xi)|^{2} = 1 \text{ for } a.e. \xi \in \mathbb{R}$$

and
$$\sum_{j=0}^{\infty} \hat{\psi} (2^{j} \xi) \hat{\psi} [2^{j} (\xi + 2m\pi)] = 0$$

for a.e. $\xi \in R$, $m \in 2Z + 1$

Unit-II

2. Suppose that the low pass filter m_0 of an MRA is a C^1 function and the scaling function ψ satisfies $\psi(0) = 1$ and $|\psi(\xi)| = O(|\xi|^{-\frac{1}{2} - \alpha})$ at ∞ for some $\alpha > 0$. Then show that m_0 must satisfy the following property.

P.T.O.

(i) There exists a set k < R which is a finite. Union of closed bounded intervals such that 0 is in the interior of k

$$\sum_{k \in \mathbb{Z}} \chi_k(\xi + 2k\pi) = 1 \text{ for } a.e. \ \xi \in \mathbb{R}.$$

(ii) $m_0(2^{-j}\xi) \neq 0$ for all j = 1, 2, 3... and all $\xi \in k$.

Or

Show that a function $\psi \in L^2(R)$ is a scaling function for an MRA if and only if

$$\sum_{k \in \mathbb{Z}} | \stackrel{\wedge}{\psi} (\xi + 2k\pi) |^2 = 1 \text{ for } a.e. \ \xi \in T$$

$$\lim_{j\to\infty} |\stackrel{\wedge}{\psi} (2^{-j}\xi)| = 1 \text{ for } a.e. \ \xi \in R.$$

These exists a 2π -periodic function m_0 such that

$$\mathring{\psi}(2\xi) = m_0(\xi) \mathring{\psi}(\xi).$$

Unit-III

3. For any $h \in L^2(R)$, if $Qh \in L^2(R)$ and $Ph \in L^2(R)$, then show that

(i)
$$R(Qh)_{(s, t)} = s(Rh)_{(s, t)} + \frac{1}{2\pi i} \frac{\partial}{\partial t} (Rh)_{(s, t)}$$

(ii)
$$R (Ph)_{(s, t)} = -i \frac{\partial}{\partial s} (Rh)_{(s, t)}$$

Or

Let $\psi \in L^2(R)$ be such that

$$A_{\psi} = \underline{S}_{\psi} - \sum_{9 \in 2z+1} [\beta_{\psi}(9) \beta_{\psi}(-9)]^{1/2} > 0$$

H-4/25/22

and
$$B_{\psi} = \bar{S}_{\psi} + \sum_{9 \in 2z+1} [\beta_{\psi}(9) \beta_{\psi}(-9)]^{1/2} < \infty$$

then show that $\{\psi_{j, k} : j, k \in \mathbb{Z}\}$ is a frame with frame bands A_{ψ} and B_{ψ} .

Unit-IV

4. If $N = 2^9$ then prove that $C_N \equiv E_1, E_2, E_3 \dots E_9$ where each E_j is an $N \times N$ matrix such that each row has precisely two non-zero entries.

Or

Explain discrete cosine transform and how will you differentiate it from fast cosine transform?

Unit-V

5. Show that $l^2(z)$ is an orthonormal direct sum of the sequence E_i .

Or

Prove that the sequence $\{u_{j,k}: j \in \mathbb{Z}, 0 \le k \le l_j - 1\}$ is an orthonormal basis for $l^2(\mathbb{Z})$, where

$$u_{j,k}(x) = \sqrt{\frac{2}{l_j}} \omega_j(x) \cos\left(\pi \left(k + \frac{1}{2}\right) \left(\frac{x - a_j}{l_j}\right)\right) j; x \in \mathbb{Z}$$

* * * * * C * * * * *