5. (a) If the arithmetic mean of the data given below is 28, find the missing frequency:

Profit per retail	Number of retail
shop in \mathbb{Z} x	shops f
0-10	12
10 - 20	18
20-30	27
30 – 40	_
40-50	17
50 – 60	6

(b) Find the median wage for the following data:

Wages x	Number of workers f
20-30	25
30 – 40	12
40 - 50	15
50 - 60	13
60 – 70	5

(c) Find the variance and standard deviation for the following data :

57, 64, 43, 67, 49, 59, 44, 47, 61, 59

0 0 0 0 0 0 0 0 0 0 0

I/104—22

Roll No.

Annual Examination, 2022

B.C.A. Part I

BRIDGE COURSE FOR BCA

(Only for Non-mathematics Students)

Time: 3 Hours [Max. Marks: 50

Note: Attempt any two parts from each unit. All questions carry equal marks.

Unit-I

1. (a) Resolve into Partial fractions:

$$\frac{x+8}{x^2+x-2}$$

- (b) Prove that : $\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = 4abc$
- (c) An arithmetic progression has 3 as its first term. Also the sum of the first 8 terms is twice the sum of the first 5 terms. Find the common difference.

Unit-II

- **2.** (a) Find the number of integers greater then 7000, that can be formed with the digits 3, 5, 7, 8 and 9, where no digits are repeated.
 - (b) Apply the method of induction to show that:

$$\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2n+1)(2n+3)}$$

$$=\frac{n}{3(2n+3)}$$

(c) Find the coefficient of x^{11} in the expansion

of
$$\left(x^3 - \frac{2}{x^2}\right)^{12}$$
.

Unit-III

- **3.** (a) Prove that : $\frac{\sec 8\theta 1}{\sec 4\theta 1} = \frac{\tan 8\theta}{\tan 2\theta}$
 - (b) Find the value of:

$$\left(1+\cos\frac{\pi}{8}\right)\left(1+\cos\frac{3\pi}{8}\right)$$

$$\left(1+\cos\frac{5\pi}{8}\right)\left(1+\cos\frac{7\pi}{8}\right)$$

(c) From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower, fixed at the top of a 20m high building are 45° and 60° respectively. Find the height of the tower.

Unit-IV

- **4.** (a) Find the slop of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, 4) and Q (8, 0).
 - (b) Find the acute angle between the pair of the line represented by the following equation:

$$y^2 - xy - 6x^2 = 0$$

(c) Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the latus rectum of the ellipse $36x^2 + 4y^2 = 144$.