G-1/180/22

Roll No.

I Semester Examination, January 2022

M.Sc.

MATHEMATICS

Paper V

(Advanced Discrete Mathematics-I)

Time: 3 Hours] [Max. Marks: 80

Note: All questions are compulsory. Question Paper comprises of 3 Sections. Section A is objective type/multiple choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTIONA

1×10=10

(Objective Type/Multiple Choice Questions)

Choose the correct answer:

- **1.** If $\sim (p \rightarrow q)$ choose the correct answer :
 - (a) $-p \wedge q$
- (b) $-p \vee q$
- (c) $p \wedge -q$
- (d) $p \vee q$

2. Negation of the statement $\exists x P(x) \lor \forall y Q(y)$ is :

- (a) $\forall x P(x) \land \forall y Q(x)$
- (b) $\forall x P(x) \lor \exists y Q(x)$
- (c) $\forall x \sim P(x) \vee \exists y \sim Q(x)$
- (d) $\forall x \sim P(x) \land \exists y \sim Q(x)$

3. Let $f: S \to T$ and (S, *) and (T, Δ) are semigroups then f is isomorphism if :

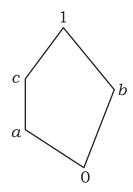
- (a) f is one-one
- (b) f is onto
- (c) f is homomorphism
- (d) All of the above

4. Let g be a semigroup homomorphism from semigroup (S, *) to semigroup (T, \oplus) if $a \in S$ is an idempotent element then g(a):

- (a) g(a) is not idempotent element
- (b) g(a) is an ordinary element
- (c) g(a) is also idempotent element
- (d) None of the above

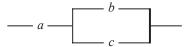
G-1/180/22

5. The lattice of the form :



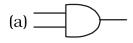
the complement b is :

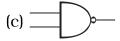
- (a) Only a
- (b) Only c
- (c) Both (a) and (b) (d) None of these
- **6.** The switching circuits :



equivalent to:

- (a) a.(b + c)
- (b) a.b + c
- (c) a + b.c)
- (d) a.b + b.c
- **7.** Which one is NAND gate?





8. In a Boolean algebra (B + ∴ ′)

$$(a + b').(a' + b).(a' + b') =$$

(a) a.b'

(b) *a'b'*

(c) a'.b

- (d) a.b
- **9.** The value of complete conjunctive normal form of a Boolean function is:
 - (a) 1

- (b) 0
- (c) Both (a) and (b) (d) None of these
- **10.** A and B are non-terminals and a and b are terminals the production $A \rightarrow a$, $B \rightarrow aA$ is of the type:
 - (a) regular grammar
 - (b) context free grammar
 - (c) context sensitive grammar
 - (d) none of the above

SECTION B

 $5 \times 4 = 20$

(Short Answer Type Questions)

Note: Answer the following questions.

Unit-I

- **1.** Prove that $\sim (p \land q) \rightarrow {\sim p \lor (\sim p \lor q)} \equiv \sim p \lor q$ without constructing truthtable.
- G-1/180/22

Or

If g is a homomorphism from a commutative semigroup (S, *) onto a semigroup (T, \oplus) then show that (T, \oplus) is also commutative semigroup.

Unit-II

2. For any commutative monoid (M, *) the set of idempotent element of M forms a submonoid.

Or

Explain direct product of semigroups.

Unit-III

3. L = {1, 2, 3, 4, 6, 12}, (L, '1'), $a \lor b$ = LCM(a, b), $a \land b$ = hcf (a, b) show that (L, '1') is a lattice but it is not complemented lattice. ('1' stands for divides).

Or

Show that for Boolean algebra $(B + , \cdot ;)$:

$$(a + b).(b + c).(c + a) = a.b + b.c + c.a$$

where $a, b, c \in B$.

Unit-IV

4. Draw the switching circuit of the function :

$$F(x, y, z) = x.y'.(z + x) + y.(y' + z)$$
 and replace it by simplex one.

G-1/180/22

P.T.O.

[6]

Or

Draw the logic circuit for the following expression:

- (i) x.y + z.y'
- (ii) (x + y).(x' + y' + z).(y'.z).

Unit-V

5. Explain the regular and contex free grammar.

Or

Construct a grammar for the language:

$$L = \left\{ a^i b^{2i}; i \ge 1 \right\}$$

SECTION C

 $10 \times 5 = 50$

(Long Answer Type Questions)

Note: Answer the following questions.

Unit-I

1. (a) Show that :

$$(7P \land (7Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$$

(b) Show that:

$$7(P \land Q) \rightarrow (7P \lor (7P \lor Q) \Leftrightarrow (7P \lor Q)$$

Or

Show that the set N of natural number is a semigroup under the operation $x^*y = \max \{x, y\}$. Is it a monoid?

G-1/180/22

Unit-II

2. Let (S, *) and (T, 0) be semigroup. If $f: S \to T$ is a semigroup homomorphism then show that (T, 0) is isomorphic to some quotient semigroup of (S, *).

Or

Define the congruence relation on the semigroup and show that the equivalence relation R defined by $a \ R \ b$ if and only if $a \equiv b \pmod{2}$ on the semigroup (I, +) of integers under addition is a congruence relation on (I, +).

Unit-III

3. Show that every chain is a distribution lattice.

Or

Show that in a distributive lattice the complement of each element is unique and also show that by an example if the complement of any element of a lattice is not unique then it is not distributive lattice.

Unit-IV

4. Write the following functions in to conjunctive normal form :

$$f(x, y, z) = (x + y + z).(xy + x'z)'$$
Or

Use the Karnaugh map representation find minimal sum of products expression of the function:

$$f(a,b,c,d) = \sum (0,5,7,8,12,14)$$

Unit-V

- **5.** Let $A = \{0, 1\}$. Show that the following expressions are regular expression over A.
 - (i) 0*(0 + 1)*
 - (ii) 00*(1 + 0)*1
 - (iii) (01)*(01 + 1*)

Also find regular sets corresponding to these regular expression.

Or

Construct the grammar for the language $L = \{a^n \ b \ a^m \mid m, \ n \ge 1\}$ and for the string $a^4 \ b \ a^5$ write the derivation.