G-1	/1	85	/22
------------	----	-----------	------------

Roll No.	
----------	--

I Semester Examination, January 2022

M.Sc.

PHYSICS

Paper I

(Mathematical Physics)

Time: 3 Hours] [Max. Marks: 80

Note: All questions are compulsory. Question Paper comprises of 3 Sections. Section A is objective type/multiple choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTIONA $1 \times 8 = 8$

(Objective Type/Multiple Choice Questions)

Note: Answer the following questions.

- **1.** In unitary matrix A⁺ is.....
- **2.** Two vectors X_1 and X_2 are called orthogonal vectors if......

P.T.O.

3.	$J_{-1}(x) =$	• • • • • • • • • • • • • • • • • • • •
	$\overline{2}$	

4.
$$\int_{-1}^{+1} P_n^2(x) dx = \dots$$

5. $w = \log z$ is analytic everywhere except at $z = \dots$

6. The CR-equations for f(z) = u(x, y) + iv(x, y) to be analytic are

7. Inverse Laplace's transform of $(p+2)^{-2}$ is

8. F*(-w)

SECTION B

 $6 \times 4 = 24$

(Short Answer Type Questions)

Note: Answer the following questions.

Unit-I

1. Write any *five* properties of an orthogonal matrix.

Or

Write properties of eigen values.

G-1/185/22

Unit-II

2. To prove Laguerre Rodrigues Formula :

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$$

Or

To prove:

$$e^{2tx-t^2} = \sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(x)$$

Unit-III

3. Describe about Cauchy's Integral Theorem.

Or

Describe about Cauchy's Integral Formula.

Unit-IV

4. Find the Laplace's transform of $\frac{1-e^t}{t}$.

Or

Write the Linear property of Fourier's transform.

SECTION C

 $12 \times 4 = 48$

(Long Answer Type Questions)

Note: Answer the following questions.

G-1/185/22

P.T.O.

Unit-I

1. (a) Find the characteristic equation of the matrix:

$$A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$

(b) Show that the matrix A, defined as under, is orthogonal:

$$[A] = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$$

Or

(a) Show that the matrix [A] as given below is Unitary:

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

(b) Find the eigen values of the matrix:

$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

G-1/185/22

Unit-II

2. Solve the Legendre's differential equation :

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0$$

(n = constant).

Or

Solve the Laguerre's differential equation:

$$x\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} + \lambda y = 0$$

 $(\lambda = constant).$

Unit-III

- **3.** (a) Show that the function $f(z) = \sqrt{(|xy|)}$ is not regular at the origin although the Cauchy-Riemann equation are satisfied at that point.
 - (b) If f(z) is an analytic function of |z|. Prove that:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$$

Or

Evaluate the following contour Integration:

(a)
$$\int_0^\infty \frac{1 - \cos x}{x^2} dx$$

(b)
$$\int_{-\infty}^{+\infty} \frac{x^2 dx}{\left(x^2 + a^2\right)^3}$$
.

Unit-IV

- **4.** (a) Find the Laplace's Transform $\frac{\sin 2t}{t}$.
 - (b) Find the inverse transform of $\frac{p}{(p^4 + 4a^4)}$.

Or

(a) Find the Fourier transform of the function:

$$f(x) = \begin{cases} 1 - x^2, & \text{for } |x| \le 1 \\ 0, & \text{for } |x| \ge 1 \end{cases}$$

(b) Find Fourier series to represent $f(x) = x^2 - 2$ in interval -2 < x < 2.
