G-3/378/22

III Semester Examination, January 2022

M.Sc.

MATHEMATICS

Paper III (Wavelets-I)

Time : 3 Hours]

[Max. Marks : 80

Note : All questions are compulsory. Question Paper comprises of 3 Sections. Section A is objective type/multiple choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTIONA 1×10=10

(Objective Choice Questions)

Note : Answer all questions.

- **1.** Write reconstruction formula for generating wavelet by a single function.
- **2.** Define Lebesrgue point.
- **3.** Write a necessary and sufficient condition for $\{e^{2\pi \sin x} b \cos\}_{\ln \in \mathbb{Z}}$ to be an orthonormal system in L²(R).

- **4.** Define smooth projections on $L^2(R)$.
- **5.** State Plancherel theorem.
- **6.** Prove the following property of low pass filter : $|m_0(\xi)|^2 + |m_0(\xi + \pi)|^2 = 1$ for *a.e.* $\xi \in \mathbb{R}$
- **7.** Write necessary and sufficient conditions for the orthonormality of the system $\{\psi_{j, k} : j, k \in Z\}$.
- **8.** Write the conditions that completely characterize orthonormal wavelets.
- **9.** Prove that the basic spline of order n, Δ^n , satisfies the following property : supp. $(\Delta^n) = [0, n + 1]$ and $\Delta^n(x) > 0$ for all $x \in (0, n + 1)$.
- **10.** Write the Franklin periodic wavelet basis.

SECTION B 5×4=20

(Short Answer Type Questions)

Note : Answer the following questions.

Unit-I

1. Prove that, for $g = \chi_{[0, 1]}$, $\{g_{m, n} : m, n \in Z\}$ is an orthonormal basis of L²(R).

Or

Draw graph of the bell function *b* associated with $[\alpha, \beta]$ and prove that supp. (*b*) $\leq [\alpha - \epsilon, \beta + \epsilon']$ on $[\alpha - \epsilon, \alpha + \epsilon]$.

G-3/378/22

[3] **Unit-II**

2. Prove that $\{1, \sqrt{2} \cos(k\pi x)\}, k = 1, 2, 3,...$ is an orthonormal basis of L²([0, 1]) and its polarity is (+, +).

Or

Prove that $U = F^{-1} AF$ and $U^* = F^{-1} A^*F$. Also prove that

$$(U^*F)(x) = \begin{cases} \overline{s(x)} f(x) - s(-x) f(-x), & x > 0\\ s(-x) f(x) + \overline{s(x)} f(-x), & x < 0 \end{cases}$$

Unit-III

3. If $g \in L^2(\mathbb{R})$, then prove that $\{g(-k) : k \in z\}$ is an orthonormal system if and only if $\sum_{k \in \mathbb{Z}} |\hat{\mathbf{g}}(\xi + 2k\pi)|^2 = 1$ for *a.e.* $\xi \in \mathbb{R}$.

Or

Let ψ be an $L^{\infty}(\mathbb{R})$ function such that $|\psi(x)| \leq \frac{c}{(1+|x|)^{1+\varepsilon}}$ a.e. for some $\varepsilon > 0$.

If $\{\psi_{j, k} : j, k \in Z\}$ is an orthonormal system in L²(R), then prove that $\int_{\mathbb{R}} \psi(x) dx = 0$.

Unit-IV

4. If ψ is a band-limited orthonormal system, then

prove that $\sum_{j \in \mathbb{Z}} |\hat{\psi}(\mathbb{Z}^{j}\xi)|^{2} = 1$ for *a.e.* $\xi \in \mathbb{R} - \{0\}$. **G-3/378/22** P.T.O. Construct a wavelet ψ such that supp. ($\hat{\psi}$) is disjoint from the support of the Fourier transform of the Shannon wavelet.

Unit-V

5. Prove that a function f in L²(R) belongs to V₀ if and only if $\xi^2 \hat{\phi}(\xi)$ is a 2π periodic function on R.

Or

Prove that the spline wavelets ψ^n , n = 1, 2,...and their associated scalling functions ψ^n have exponential decay at ∞ .

SECTION C $10 \times 5 = 50$

(Long Answer Type Questions)

Note : Answer the following questions.

Unit-I

1. Let ψ be such that $\hat{\psi}(\xi) = \chi_1(\xi)$, where $I = [-2\pi, -\pi] \cup [\pi, 2\pi]$. Show that ψ is an orthonormal wavelet for L²(R).

G-3/378/22

[5] Or

If I = $[\alpha, \beta]$, then prove that $f \in H_I = P_I (L^2(\mathbb{R}))$ iff $f = b_I S$, where $S \in L^2(\mathbb{R})$, b_I is the bell function associated with I, and S is even or odd on $[\alpha - \epsilon, \alpha + \epsilon]$ according to the choice of polarity at α , and even or odd on $[\beta - \epsilon', \beta + \epsilon']$ according to the choice of polarity at β .

Unit-II

2. Prove that the system $\gamma_{j,k}(\xi) = \frac{2^{j/2}}{\sqrt{2\pi}} b(2^{j}\xi) e^{i\frac{2k+1}{2}2^{j}\xi}$, *j*, $k \in \mathbb{Z}$ is an orthonormal basis for L²(R), where *b* restricted to $[0, \infty)$ is a bell function for $[\pi, 2\pi]$ associated with $0 < \varepsilon \le \frac{\pi}{3}$, $\varepsilon' = 2\varepsilon$, and *b* is even on R.

Or

Let *s* satisfy $|s(x)|^2 + |s(-x)|^2 = 1$ for all *x* with support on $[\varepsilon, \infty)$, and suppose that $s \in \mathbb{C}^d$, where \mathbb{C}^d is the space of all functions with continuous derivatives up to order *d*. Then prove that U_α : $\mathbb{C}^d \cap L^2(\mathbb{R}) \to \mathbb{S}_\alpha$ and $U_\alpha^* : \mathbb{S}_\alpha \to \mathbb{C}^d \cap L^2(\mathbb{R})$, and both operators are one-to-one and onto, where

G-3/378/22

P.T.O.

 $S_{\alpha} = \{f \in C^{d} (\mathbb{R} - \{\alpha\}) \cap L^{2}(\mathbb{R}) : f^{(n)} (\infty \pm) \text{ exist for} \\ 0 \le n \le d, \\ \lim_{x \to \alpha^{+}} f^{(n)} (x) = 0 \text{ if } n \text{ is odd,} \\ \text{and} \quad \lim_{x \to \alpha^{-}} f^{(n)} (x) = 0 \text{ if } n \text{ is even} \end{cases}$

Unit-III

3. If a scaling function C_p for an MRA has polynomial decay, then prove that the low-pass filter m_0 belongs to C^{∞} (T).

Or

Let $\psi \in L^2(\mathbb{R})$ be a compactly supported function such that $\psi \in \mathbb{C}^{\infty}$, then prove that $\{\psi_{j, k} : j, k \in Z\}$ cannot be an orthonormal system in L²(\mathbb{R}), where $\psi_{j, k}(x) = 2^{j/2} \psi (2^j x - k).$

Unit-IV

4. Suppose $f \in L^2(\mathbb{R})$, then prove that f is orthogonal to W_j iff $\sum_{k \in \mathbb{Z}} \hat{f} (\xi + 2^{j+1} k\pi) \overline{\hat{\psi} (2^{-j}\xi + 2k\pi)} = 0$ for *a.e.* $\xi \in \mathbb{R}$. G-3/378/22 [7] Or

Suppose $\psi \in L^2(\mathbb{R})$, $b = |\hat{\psi}|$ has support contained in $\left[-\frac{8}{3}\pi, -\frac{2}{3}\pi\right] \cup \left[\frac{2}{3}\pi, \frac{8}{3}\pi\right]$ and ψ is an orthonormal wavelet. Then prove that *b* is almost everywhere even if and only if $b^2(\xi) + b^2(2\pi - \xi) = 1$ for *a.e.* $\xi \in \left[\frac{2}{3}\pi, \frac{4}{3}\pi\right]$.

Unit-V

5. Prove that a function f in L²(R) belongs for V₀ iff $\hat{f}(\xi) = \left(\frac{\sin(\xi/2)}{\xi/2}\right)^2 m_f(\xi)$, where m_f is a

 2π -periodic function in L²(T).

Or

For any n = 1, 2, 3,... prove that the spline wavelet ψ^n satisfies $\sum_{k \in \mathbb{Z}} \frac{\hat{\psi}^n (\xi + 2k\pi)}{(\xi + 2k\pi)^{n+1}} = 0$ for *a.e.* $\xi \in \mathbb{R}$.
