G-3/38//ZZ	G-3/387	7/22
------------	----------------	------

Roll	No	

III Semester Examination, January 2022

M.Sc.

PHYSICS

Paper III

(Condensed Matter Physics-I)

Time: 3 Hours] Max. Marks: 80

Note: All questions are compulsory. Question Paper comprises of 3 Sections. Section A is objective type/multiple choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTIONA

 $1 \times 8 = 8$

(Objective Type Questions)

Fill in the blanks:

- 1. The number of possible types of Brovice lattice in two dimension is
- **2.** Unit cell is defined as
- **3.** A vacancy is the simplest defect in a crystal.
- **4.** The direct lattice is the of its own reciprocal lattice. P.T.O.

5 .	The	velocity	of	\overline{e}	in	periodic	potential	is

- **6.** Formula for Hall coefficient is
- 7. The value of magnetic susceptibility for diamagnetic material is
- **8.** The spin of magnon is

SECTION B

 $6 \times 4 = 24$

(Short Answer Type Questions)

Unit-I

1. Explain three dimensional Bravice lattice.

Or

What are Miller indices? Draw neat diagram to indicate Miller indices in a simple cubic crystal.

Unit-II

2. Explain plastic deformation.

Or

Differentiate edge and screw dislocation with suitable diagram.

Unit-III

3. What is Hall effect? Explain it.

Or

Classify the materials on the basis of band theory.

G-3/387/22

Unit-IV

4. Discuss Weiss theory of ferromagnetism.

State and prove Curie Weiss law.

SECTION C

 $12 \times 4 = 48$

(Long Answer Type Questions)

Unit-I

1. Describe the face centered cubic and hexagonal close packed structure. Prove that the close packing of atoms in the hcp structure demands

on axial ratio $\frac{c}{a} = \frac{8}{3}$.

Discuss Ewald construction and derive Bragg's diffraction condition in terms of the reciprocal lattice.

Unit-II

2. What are colour centers? How are they produced? What are experimental facts on F-center's and how are they explained?

Or

Explain Frenkel defects. Show that the number of Frankel defects in equilibrium at a given P.T.O.

temperature is proportional to $(NNi)^{1/2}$, where N be the number of atoms and Ni be the interstitial atoms.

Unit-III

3. What is Fermi surface? Explain de Haas Von Alfen effect.

Or

Explain Tight Bonding approximation for calculating band structure.

Unit-IV

4. What do you mean by exchange interaction? Find out expression for Heisenberg exchange interaction.

Or

Discuss Langevin theory for paramagnetic gases in detail.

* * * * * C * * * * *