
[8]

(b) Show that a tree with *n* vertices has (n-1) edges.

Or

(a) Use BFS algorithm to find a spanning tree of graph G

(b) Show that in any binary tree T on *n* vertices, the number of pendent vertices is equal to (n + 1)/2.

0 0 0 0 0 c 0 0 0 0 0

Roll No.....

M.Sc. I Semester Examination, April-2021 INFORMATION TECHNOLOGY

Paper III

(Mathematical Foundations of Computer Science)

Time : 3 Hours]

[Maximum Marks : 100

Note : All questions are compulsory. Question Paper comprises of 3 sections. Section A is objective type/Multiple Choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTION 'A' 1×10=10

(Multiple Type Questions)

Choose the correct answer :

- 1. What is the cartesian product of $A = \{1, 2\}$ and $B = \{a, b\}$?
 - (a) $\{(1, a), (1, b), (2, a), (2, b)\}$
 - (b) $\{(1, 1), (2, 2) (a, a), (b, b)\}$
 - (c) $\{(1, a), (2, a), (1, b), (2, b)\}$
 - (d) (1, 1), (a, a), (2, a), (1, b)

[6]

defined by xRy if $x^y = y^x$, where $x, y \in I$, then is the relation R an equivalence relation?

Or

- (a) If $A = \{1, 2\}$, $B = \{2, 3\}$ and $C = \{3, 5\}$, then find $(A \times B) \cap (A \times C)$.
- (b) Obtain the principal disjunctive normal form of the following :
 - (i) $p \Rightarrow q$
 - (ii) $q \lor (p \lor \sim q)$.
- **2.** (a) Prove that the complement of each element of Boolean algebra B is unique.
 - (b) Design the circuit for the following polynomials x + y (z + st) + uv.

Or

(a) Replace the switching function

F(x, y, z) = x.y.z + x.y.z + x.y.z

by a simpler switching circuit.

- (b) Prove that a lattice (L, \leq) is modular if and only if $(a \land b) \lor (a \land c) = a \land (b \lor (a \land c))$ for all $a, b, c \in L$.
- **3.** (a) Define language. Prove the following identities :

(1 + 00*1) + (1 + 00*1) (0 + 10*1) * (0 + 10*1)= 0 * 1 (0 + 10 * 1) *

[3]

- 8. The..... of a graph G consists of all vertices and edges of G.
 - line graph (b) eulerian circuit
 - (c) edge graph (d) path complement graph
- **9.** An undirected graph G which is connected and acyclic is called.....
 - (a) Forest (b) Bipartite graph
 - (c) Tree (d) Cyclic graph
- **10.** In preorder traversal of a binary tree the second step is.....
 - (a) traverse right subtree and visit the root
 - (b) visit the root

(a)

- (c) traverse the right subtree
- (d) traverse the left subtree
 - *SECTION 'B'* **6×5=30**

(Short Answer Type Questions)

Note : Answer the following questions.

1. List all the subsets of the set $A = \{a, b, c\}$.

Or

Prove that $(p \Leftrightarrow q) \land (q \Leftrightarrow r) \Rightarrow (p \Leftrightarrow r)$ is a tautology.

G-1/127/21 P. T. O.

G-1/127/21

2. Prove that in a distributive lattice, if an element has a complement then this complement is unique.

Or

For any two elements a and b of a Boolean algebra B, then,

(i) a + (a.b) = a

(ii) a.(a+b) = a

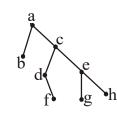
3. Show that if every element of a group (G,0) be its own inverse, then it is an abelian group.

Or

Let $L_1 = \{x, xy, x^2\}$ and $L_2 = \{y^2, xyz\}$ be language over $A = \{x, y\}$. Find the following :

(i) L_1L_2

(ii) L_2^2


4. Define Graph. Explain the types of graph with example.

Or

Show that the maximum number of edges in a simple graph with *n* vertices is n(n-1)/2.

G-1/127/21

5. Consider the rooted tree

- (a) What is the root of T?
- (b) Find the leaves and the internal vertices of T.
- (c) What are the levels of c and e.
- (d) Find the children of c and e.
- (e) Find the decendants of the vertices *a* and *c*.

Or

Discuss the applications of trees in computer science.

SECTION'C' 12×5=60 (Long Answer Type Questions)

- Note : Answer the following questions in 500 words.
- 1. (a) If A, B, C are any three non-empty sets, then prove that

 $(A-B) \times C = (A \times C) - (B \times C).$

(b) If I is the set of non-zero integers and a relation R is

G-1/127/21 P. T. O.

- **2.** $p \land q \Rightarrow p \lor q$ is a
 - (a) Tautology (b) Contradiction
 - (c) Contigency (d) None of the above
- **3.** Evalute the expression :

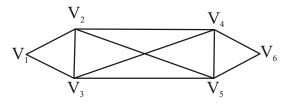
(a)

(X+Z)(X-XZ')+XY+YXY+Z' (b) Y+XZ'+Y'Z

- (c) X'Z+Y (d) X+Y
- 4. If every two elements of a poset are comparable then the poset is called :
 - (a) Subordered poset (b) Totally ordered poset
 - (c) Sub lattice (d) Semigroup
- 5. A group (M, *) is said to be abelian if.....
 - (a) (y * x) = (x + y) (b) (x + y) = (y + x)
 - (c) (x * y) = (y * x) (d) (x + y) = x
- 6. The polynomial $f(x) = x^3 + x + 1$ is a reducible.
 - (a) True (b) False
- 7. In a..... the vertex set and the edge set are finite sets.
 - (a) finite graph (b) connected graph
 - (c) infinite graph (d) bipartite graph

G-1/127/21

[7]

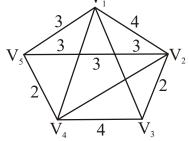

(b) If R is a ring such that $a^2 = a \forall a \in R$ prove that

 $a + a = 0 \forall a \in \mathbb{R}$, *i.e.*, each element of \mathbb{R} is its own additive inverse.

Or

Define field. Show that every field is an integral domain.

4. (a) Find the degree of each vertex of the following graph :



(b) Prove that the sum of the degree of all vertices in a graph G is equal to twice the number of edges in G.

Or

Show that every self-complementary graph has 4k or 4k+1 vertices.

5. (a) Find the minimal spanning tree of the given weighted graph. V_1

G-1/127/21

P. T. O.