[6] Or

Determine the maximum and minimum value of the function

$$f(x, y) = x^2 + y^2 + \frac{\sqrt[2]{3}}{3} xy$$

subject to the constraints $4x^2 + y^2 = 1$.

5. Suppose W is *k*-form in an open set $E \subset \mathbb{R}^n$, ϕ is a *k*-surface in \mathbb{E}_1 with parameter domain $D \subset \mathbb{R}^k$ and Δ is the *k*-surface in \mathbb{R}^k , with parameter domain D, defined by $\Delta(u) = u(u \in D)$, then

$$\int_{\phi} W = \int_{\Delta} W \phi$$

Or

Write a short note on differential forms.

M.Sc. I Semester Examination, April-2021 MATHEMATICS

Paper II

(Real Analysis-I)

Time : 3 Hours]

Choose the correct answer :

[Maximum Marks: 80

Note : All questions are compulsory. Question Paper comprises of 3 sections. Section A is objective type/Multiple Choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTION 'A'

(Objective Type Questions)

 $1 \times 10 = 10$

- **1.** The sequence $\{f_n\}$ where $f_n(x) = nx (1-x)^n$ on [0, 1] does :
 - (a) converge (b) not converge
 - (c) uniformly converge(d) not uniformly converge
- **2.** Teh limit function of uniformly convergent sequence of continuous function is itself :
- (a) continuous (b) uniformly convergent
- (c) convergent (d) not continuous
- **3.** The power series $\sum_{n=1}^{\infty} nx^{n-1}$ has radius of convergence equal to :
 - (a) $\frac{1}{2}$ (b) 0

(c) 1 (d) -1

- **4.** Every Cauchy sequence has a :
 - (a) convergent subsequence
 - (b) increasing subsequence
 - (c) decreasing subsequence
 - (d) positive subsequence

5. Compute the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ of the coordinate transformation $x = u^2 - v^4, y = uv$: (a) $2u^2 + 4v^4$ (b) xu - yv

6. If $f(x,y) = x^2 + y^2 - xy + 2$, then :

(c) $2u^2$

(a)
$$f(x, y) = -f(y, x)$$
 (b) $f(x, y) = f(y, x)$
(c) $f(x, y) = -f(x, y)$ (d) $f(x, y) = f(y, x^2)$
7. Sum of the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$ is :
(a) $\log 2$ (b) $\frac{3}{2} \log 2$
(c) $\frac{1}{2} \log 2$ (d) $\log 3$

(d) $3u^2 + 7v^6$

8. Every continuous function on [*a*, *b*] is Riemann integrable if :

(a) $U(P, f) - L(P, f) \ge \varepsilon$ (b) $U(P, f) - L(P, f) \le \varepsilon$

(c)
$$U(P, f) - L(P, f) \le \varepsilon$$
 (d) $U(P, f) - L(P, f) \ge \varepsilon$

G-1/131/21

[5]

SECTION'C' (Long Answer Type Questions)

(Long Thiswell Type Quest

Note : *Answer the following questions.*

1. State and prove Dirichlet's test for uniform convergence.

Or

Suppose $C_n \ge 0$ for $n = 1, 2, 3 \dots, \Sigma C_n$ converges, $\{S_n\}$ is a sequence of distinct point in (a, b) and

$$\alpha(a) = \sum_{n=1}^{\infty} C_n I(x-S_n).$$

Let *f* be continuous on [*a*, *b*]. Then prove that :

$$\int_{a}^{b} f d_{\alpha} = \sum_{n=1}^{\infty} C_{n} f(S_{n})$$

2. State and prove Tauber's theorem.

Or

State and prove Riemann's theorem on rearrangement of series.

3. Let E be an open set in \mathbb{R}^n , *f* maps into \mathbb{R}^m , *f* be differentiable at $x_0 \in \mathbb{E}$, g map an open set containing $f(\mathbb{E})$ into \mathbb{R}^k and *g* be differentiable at $f(x_0)$. Then the mapping F of E into \mathbb{R}^k defined by $\mathbb{F}(x) = g(f(x))$ is differentiable at x_0 and $\mathbb{F}'(x_0) = g'(f(x_0))f'(x_0)$.

Or

State and prove the Chain rule.

4. Prove that $\frac{\partial(u, v, w)}{\partial(x, y, z)} \times \frac{\partial(x, y, z)}{\partial(u, v, w)}$ JJ' = 1.

G-1/131/21

 $10 \times 5 = 50$

- **9.** Let X,Y, Z be vector space, $A \in L(X, Y)$ and $B \in L(X, Y)$. BA is linear, then A^{-1} is :
 - (a) Invertible (b) Non-invertible
 - (c) Non-linear (d) Linear and Invertible
- **10.** If series $\sum a_{n'} \sum b_{n'} \sum c_n$ converge to A, B, C respectively and if $C_n = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_{0'}$ then *c* is equal to :
 - (a) $(AB)^{-1}$ (b) A+B
 - (c) AB (d) $A^{-1} + B^{-1}$

SECTION 'B' $4 \times 5 = 20$ (Short Answer Type Questions)

Note : *Answer the following questions.*

1. State and prove the Cauchy's criterion for uniform convergence.

Or

Prove that the series :

 $\frac{1}{a} - \frac{2a}{a^2 - 1} \cos x + \frac{2a}{a^2 - 2^2} \cos 2x \dots$ is uniformly conver-

gent in any finite interval.

2. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{Z^n}{\sqrt{n+1}}$.

Or

If the two real power series $\sum a_n x^n$ and $\sum b_n x^n$ have radius of convergence R > 0 and converges to the same function in (– R, R), then the two series are identical.

3. Let Ω be the set of all invertible linear operators on \mathbb{R}^n , if $A \in \Omega$, $B \in L(\mathbb{R}^n)$, and $|| B - A || || A^{-1} || < 1$.

Or

Let *f* maps a convex open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , *f* be differentiable in E and there be a real number M such that' $|| f'(x) || \le M$ for every $x \in E$. Then

 $|f(b) - f(a)| \le M |b - a|$ for all $a \in E, b \in E$.

4. Find the rectangular parallelopiped of surface area a^2 and maximum volume.

Or

Find the largest and smallest distance from (0, 0, 0) to the ellipsoid :

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, \ 0 < a < b < c.$

5. Let K be a compact subset of \mathbb{R}^n and $\{V_{\alpha}\}$ be an open cover of K. Then there exist functions $\psi_{\mathcal{I}} \dots \psi_{\mathcal{I}} \in \xi(\mathbb{R}^n)$ such that

(a) $0 \le \psi_i \le 1$ for $1 \le i \le S$

(b) Each ψ_i has its support in some $V_{\alpha'}$ and

(c) $\psi_1(x) + \psi_2(x) + \dots + \psi_s(x) = 1$ for every $x \in K$.

Or

Suppose T is a G-mapping of an open set $E \subset \mathbb{R}^n$ into an open set $V \subset \mathbb{R}^m$, S is a G-mapping on V into an open set $W \subset \mathbb{R}^p$ and W is a *k*-form in W, so that W_s is *k*-form in V and both $(W_s)_T$ and W_{sT} are *k*-form in E, where ST is defined by ST(x) = S(T(x)). Thus

 $(W_s)_T = W_{ST.}$

G-1/131/21