G-1/133/21 Roll No..... M.Sc. I Semester Examination, April-2021 MATHEMATICS Paper IV (Advanced Complex Analysis-II) Time : 3 Hours [Maximum Marks: 80 Note: All questions are compulsory. Question Paper comprises of 3 sections. Section A is objective type/Multiple Choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice. SECTION 'A' (Objective Type Questions) *Choose the correct answer :* $1 \times 10 = 10$ **1.** In Cauchy's Goursat theorem f(z) is : (a) Continuous function(b) Constant function (c) Entire function (d) Analytic function **2.** The value of the integral |zdz|, where c is unit circle |z| = 1 is : (a) 0 (b) 1 (c) π*i* (d) 2 π*i* **3.** Total number of the roots of the equation $z^8 - 4z^5 + z^2 - 1 = 0$, that lie inside unit circle |z| = 1 is : (a) 2 (b) 3 (c) 4 (d) 5

Or

4. The residue of the function $f(z) = \frac{1}{z^2 + a^2}$ at z = ia is :

[2]

a)
$$\frac{1}{2a}$$
 (b) $\frac{-1}{2a}$

(c) $\frac{-1}{2a}$ (d) None of these

- 5. "Let f(z) be analytic inside and on a closed contour C and let $f(z) \neq 0$ inside C. Then |f(z)| attains its minimum value on C and not inside C" is the statement of :
 - (a) Minimum modulus principle
 - (b) Maximum modulus principle
 - (c) Argument principle
 - (d) Rouche's theorem

6. If $0 \le \theta \le \frac{\pi}{2}$ then $\frac{2\theta}{\pi} \le \sin \theta \le \theta$ is called :

- (a) Jorden's Lemma (b) Jorden's Inequality
- (c) Schwarz Inequality (d) Schwarz Lemma
- 7. Bilinear transformation is also called :
 - (a) Linear transformation
 - (b) Elementary transformation
 - (c) Inverse transformation
 - (d) Mobius transformation

G-1/133/21

Show that the equation $z^4 + 4(1 + i)z + 1 = 0$ has one root in each quadrant.

3. Apply the calculus of residue, to prove that :

$$\int_0^\infty \frac{dx}{(1+x^2)^2} = \frac{\pi}{4} \, .$$

Or

Apply the calculus of residue to prove that :

$$\int_0^\infty \frac{\sin \pi x}{x(1-x^2)} dx = \pi \, \cdot$$

4. Prove that, every bilinear transformation maps circles or straight lines into circles or straight lines.

Or

Show that the transformation $(w + 1)^2 = \frac{4}{z}$, the unit circle in

w-plane corresponds to a parabola in *z*-plane and inside of the circle to the outside of the parabola.

5. State and prove Riemann mapping theorem.

Or

State and prove open mapping theorem.

0 0 0 0 0 c 0 0 0 0 0

- **8.** An analytic function *f*(*z*) in a domain D is said to be conformal is inside D :
 - (a) f(z) = 0 (b) f'(z) = 0
 - (c) $f'(z) \neq 0$ (d) f(z) = 0
- 9. The closure of a totally bounded subset is :
 - (a) not bounded (b) totally bounded
 - (c) locally unbounded (d) none of these
- **10.** In Montel's theorem $F \subseteq H(D)$ is normal if and only if F is :
 - (a) normal (b) continuous
 - (c) equicontinuous (d) locally bounded

SECTION 'B' 5 × 4 = 20

(Short Answer Type Questions)

Note : *Answer the following questions.*

1. If C is closed contour containing the origin inside it, prove that :

$$\frac{a^n}{\underline{|n|}} = \frac{1}{2\pi i} \int_C \frac{e^{az}}{z^{n+1}} dz$$

Or

State and prove Liouville's theorem.

2. If a > e, use Rouche's theorem to prove that the equation $e^z = az^n$ has *n* roots inside the circle |z|=1.

Or

- State and prove Schewarz Lemma.
- **3.** State and prove Cauchy's residue theorem.

G-1/133/21

P.T.O.

Apply calculus of residues to prove that :

$$\int_0^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} \, d\theta = \frac{\pi}{6} \, \cdot$$

4. Prove that cross-ratios are invariant under a bilinear transformation.

Or

Show that the transformation $W = \frac{2z+3}{z-4}$ maps the circle

 $x^2 + y^2 - 4x = 0$ onto the straight line 4u + 3 = 0 and explain why the curve obtained is not a circle.

5. State and prove Hurwitz's theorem for the space of analytic functions.

Or

Prorve that $C(G, \Omega)$ is a complete metric space.

 $SECTION'C' 10 \times 5 = 50$

(Long Answer Type Questions)

Note : *Answer the following questions.*

 Prove that, if *f*(*z*) be analytic within and on the boundary C of a simply connected region D and let *a* be any point within C. Then derivatives of all orders are analytic and given by :

$$f^{(n)}(a) = \frac{|\underline{n}|}{2\pi i} \int_C \frac{f(z) \, dz}{(z-a)^{n+1}}$$

Or

State and prove Laurent's Theorem.

2. State and prove Rouche's theorem.

G-1/133/21