G-2/231/21

Roll No.

M.Sc. II Semester Examination, 2021 MATHEMATICS

Paper II (Real Analysis-II)

Time: 3 Hours] [Max. Marks: 80

Note: All questions are compulsory. Question Paper comprises of 3 sections. Section A is objective type/multiple choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTIONA

 $1 \times 10 = 10$

(Objective Type Questions)

Choose the correct answer:

- **1.** Let f, α : $[a, b] \to R$ be bounded functions and α be monotone increasing. If P^* is # a refinement of the partition P of the interval [a, b], then
 - (a) $L(P, f, \alpha) \le L(P^*, f, \alpha)$
 - (b) $L(P, f, \alpha) \ge L(P^*, f, \alpha)$
 - (c) $L(P, f, \alpha) = L(P^*, f, \alpha)$
 - (d) None of these
- **2.** If the set of numbers $\Delta \gamma$ (*P*) is unbounded, then γ is called :

- (a) Rectifiable
- (b) Non-rectifiable

(c) Arc

- (d) None of these
- **3.** Every enumerable set is measurable and its measure is:
 - (a) 1

(b) 2

(c) 3

- (d) 0
- **4.** Let *E* be a measurable set, then for any set *A*:

(a)
$$m^*$$
 (A) = m^* (A \cap E) + m^* (A - [A \cap E])

(b)
$$m^*(A) = m^*(A \cap E) + m^*(A + [A \cap E])$$

(c)
$$m^*(A) = m^*(A \cap E) - m^*(A + [A \cap E])$$

(d)
$$m^*$$
 (A) = m^* ($A \cap E$) – m^* ($A - [A \cap E]$)

5. If *f* is a real valued function defined on a set *E*, then its positive and negative parts are defined as:

(a)
$$f^+ = \max(f, 0)$$
 and $f^- = \min(f, 0)$

(b)
$$f^+ = \max(f, 0)$$
 and $f^- = \max(-f, 0)$

(c)
$$f^+ = \min(f, 0)$$
 and $f^- = \max(f, 0)$

(d)
$$f^+ = \min (f, 0)$$
 and $f^- = \min (-f, 0)$

6. Let *f* be a bounded measurable functions defined on a set *E* of finite measure and *A* and *B* are disjoint measurable subsets of *E*, then :

(a)
$$\int_{A+B} f = \int_A f + \int_B f$$

(b)
$$\int_{AB} f = \int_{A} f + \int_{B} f$$

G-2/231/21

(c)
$$\int_{A \cup B} f = \int_A f + \int_B f$$

(d)
$$\int_{A \cup B} f = \int_A f - \int_B f$$

7. The Dini derivatives always exists (finite or infinite) for any function *f* and satisfy :

(a)
$$D^+ f(x) \ge D_+ f(x)$$
, $D^- f(x) \ge D f(x)$

(b)
$$D^+ f(x) \le D_+ f(x)$$
, $D^- f(x) \le D_- f(x)$

(c)
$$D^+ f(x) \ge D_+ f(x)$$
, $D^- f(x) \le D_- f(x)$

(d)
$$D^+ f(x) \le D_+ f(x)$$
, $D^- f(x) \ge D_- f(x)$

- **8.** If f is absolutely continuous on [a, b] and f = 0 a.e., then
 - (a) f is a constant function
 - (b) *f* is not a constant function
 - (c) f vanishes
 - (d) None of these
- **9.** The exponential function is convex on :
 - (a) $(-\infty, 0]$
- (b) $[0, \infty)$
- (c) $(-\infty, \infty)$
- (d) [0, 1]
- **10.** Every bounded function defined on X is in :
 - (a) $L^{P}(X)$

(b) $L^P(\mu)$

(c) $L^4(X)$

(d) $L^{\infty}(X)$

SECTION B

 $4 \times 5 = 20$

(Short Answer Type Questions)

Note: Attempt one question from each unit.

G-2/231/21

P.T.O.

Unit-I

1. Let f be a bounded function and α be a monotonically increasing function on [a, b] and if $f \in R(\alpha)$, then for every $\varepsilon > 0$, F a partition P such that $U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$.

Or

Let f be a continuous and α monotonically increasing on [a, b], then $f \in R(\alpha)$ on [a, b].

Unit-II

2. Let A be any set and E_1 , E_2 ,, E_n a finite sequence of disjoint measurable sets. Then

$$m * \left(A \cap \left[\bigcup_{i=1}^{n} E_i \right] \right) = \sum_{i=1}^{n} m * (A \cap E_i).$$

Or

Let $\{f_n\}$ be a sequence of non-negative measurable functions and $f_n \to f$ a.e., on E, then

$$\int_{E} f \le \lim_{n \to \infty} \int_{E} f_{n}.$$

Unit-III

3. Let (X, B, μ) be a measure space. If $E_i \in B$, $\mu(E_1)$ $< \infty$ and $E_i \supset E_{i+1}$, then

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} \mu\left(E_n\right).$$

Or

Let f be a bounded measurable function defined over a measurable set E, then prove that

$$\left| \int_{E} f \right| \leq \int_{E} |f|.$$

Unit-IV

4. A function *f* is of bounded variation on [*a*, *b*] iff *f* is the difference of two monotone real valued functions on [*a*, *b*].

Or

Let f be an integrable function [a, b]. If $\int_a^x f(t) dt = 0 \ \forall \ x \in [a, b]$, then f = 0 a.e. in [a, b].

Unit-V

5. Let $0 and <math>\frac{1}{p} + \frac{1}{q} = 1$. If $f \in L^p(\mu)$ and $g \in L^q$ (μ), then $\int_X |fg| du \ge \left(\int_X |f|^p\right)^{1/p} \cdot \left(\int_X |g|^q\right)^{1/q}$ provided $\int_X |g|^q \ne 0$.

Or

Let $\{f_n\}$ be a sequence of measurable functions which converge to f a.e. on a measurable set E

[6]

with $6m(E) < \infty$. Then given $\eta > 0$, there is a set $A \subset E$ with $m(A) < \eta$ such that the sequence $\{f_n\}$ converges to f uniformly on E - A.

SECTION C

 $10 \times 5 = 50$

(Long Answer Type Questions)

Note: Attempt one question from each unit.

Unit-I

1. If $f \in R(\alpha)$ on [a, b] and if a < c < b, then $f \in R(\alpha)$ on [a, c] and on [c, b] and

$$\int_{a}^{c} f \, dx + \int_{c}^{b} f \, dx = \int_{a}^{b} f \, dx.$$
Or

Let γ be a continuously differentiable curve on [a, b], then γ is rectifiable and

$$\Lambda_{\gamma}(a,b) = \int_{c}^{b} |\gamma'(t)| dt.$$

Unit-II

- **2.** Let *E* be any set. Then
 - (a) For any given $\varepsilon > 0$, F an open set $0 \supset E$, such that $m * (0) < m * (E) + \varepsilon$, i.e., $m * (0 E) < \varepsilon$.
 - (b) F a G_{δ} set $G \supset E$, such that m * (E) = m * (G).

 Or

There exists a non-measurable set in the interval [0, 1).

G-2/231/21

G-2/231/21

Unit-III

3. State and prove Lebesgue's Monotone convergence theorem.

Or

 $m(\mu)$ is a σ -ring and μ^* is countably additive on $m(\mu)$.

Unit-IV

4. State and prove Lebesgue's Differentiation theorem.

Or

Let E be a set of finite outer measure and I a collection of intervals which cover E in the sense of vitali. Then given $\varepsilon > 0$, F a finite disjoint collection $\{I_1, I_2, \ldots, I_n\}$ of intervals in I such that

$$m * \left(E - \bigcup_{i=1}^{n} I_i\right) < \infty.$$

Unit-V

5. If $f, g \in L^2$ [a, b], then $fg \in L^1$ [a, b] and $||fg|| \le ||f||_2 ||g||_2$.

Or

The L^p -spaces are complete.

* * * * * C * * * * *