G-	2	/2 3	2	/21
_	_,		_,	

Roll No.

M.Sc. II Semester Examination, 2021 MATHEMATICS

Paper III

(General and Algebraic Topology)

Time: 3 Hours] [Max. Marks: 80

Note: All questions are compulsory. Question Paper comprises of 3 sections. Section A is objective type/multiple choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTIONA

 $1 \times 10 = 10$

P.T.O.

(Objective Type Questions)

Note: Choose the one correct answer:

- **1.** Let X_1 , X_2 be two topological spaces and let X be the product space. Let P be the projection, defined by P_1 (x_1 , x_2) = x_1 and P_2 (x_1 , x_2) = x_2 which of the following is a wrong statement :
 - (a) P is onto
- (b) *P* is continuous
- (c) P is open
- (d) P is closed
- **2.** The diagonal map is :
 - (a) Continuous
- (b) One-one
- (c) Many one
- (d) One-one onto

3.	Every	Tychonoff	cube is
----	-------	-----------	---------

- (a) Regular
- (b) T_0 -space
- (c) Normal space
- (d) T_2 -space
- **4.** The space (*R*, *U*) is :
 - (a) Metrizable
- (b) Continuous
- (c) T_4 -space
- (d) T_2 -space
- **5.** Every metrizable space is :
 - (a) Countable
- (b) First countable
- (c) Second countable (d) None of these
- **6.** The Unit interval [0, 1] is:
 - (a) metrizable
- (b) not metrizable
- (c) compact
- (d) both (a) and (c)
- **7.** A topological space (*X*, *T*) is Hausdorff iff net in *X* can converge to :
 - (a) many points
- (b) at least two points

(c) a set

- (d) unique point
- **8.** If $\{f_a : a \in A\}$ is an ultranet in X and g a mapping of X into Y, then $\{g(f_a) : a \in A\}$ is a :
 - (a) net

(b) ultranet

(c) filter

- (d) none of these
- **9.** If X is path connected and x_0 and x_1 are two points of X, then π_1 (X, x_0) to π_1 (X, x_1) is :
 - (a) Isomorphic
- (b) Homomorphic
- (c) Homotopy
- (d) None of these

G-2/232/21

 $\begin{bmatrix} 4 \end{bmatrix}$

- **10.** The fundamental group of S^I is isomorphic to :
 - (a) additive group of integer
 - (b) multiplicative group of integer
 - (c) additive group modulo (m) of integer
 - (d) none of these

SECTION B

 $4 \times 5 = 20$

(Short Answer Type Questions)

Note: Attempt one question from each unit.

Unit-I

1. Let $T_1 = \{\phi, \{1\}, X_1\}$ be a topology on $X_1 = \{1, 2, 3\}$ and $T_2 = [\phi, X_2, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}]$ be a topology for $X_2 = \{a, b, c, d\}$. Find a base for the product topology.

Or

If (X, T) is the product space of topological spaces (X_1, T_1) and (X_2, T_2) , then show that the projection maps are continuous.

Unit-II

2. State and prove Alexander subbase lemma.

Or

State and prove Tychonoff's theorem.

G-2/232/21

P.T.O.

Unit-III

3. Let (X, d) be a compact metric space and (Y, ρ) be a Hausdorff space. Let $f: X \to Y$ be a continuous onto map. Then prove that Y is metrizable.

Or

Show that Discrete topological space is metrizable.

Unit-IV

4. Show that every convergent net in a Hausdorff space *X* has unique cluster point, which is the unique limit point of the net.

Or

Let (X, T) be a topological space and $A \subset X$. Then prove that a point $x \in X$ belongs to \overline{A} iff these exists a filter base on A converging to x.

Unit-V

- **5.** Define the following :
 - (i) Homotopy of paths,
 - (ii) Fundamental group of a topological space.

G-2/232/21

[6]

Or

Define covering space, with example. Show that the map $p: R \to S^1$ given by equation $p(x) = (\cos 2\pi x, \sin 2\pi x)$ is a covering map.

SECTION C

 $10 \times 5 = 50$

(Long Answer Type Questions)

Note: Attempt one question from each unit.

Unit-I

1. Show that the product space $X = \pi\{X_{\alpha} : \alpha \in \Lambda\}$ is a T_1 space iff each co-ordinate space is T_1 -space.

Or

Prove that the product space $X = \pi \{X_\alpha : \alpha \in \Lambda\}$ is connected iff each co-ordinate space is connected.

Unit-II

2. Let f be a map of a space Y into a product space $X = \pi\{X_{\lambda} : \lambda \in \Lambda\}$, then prove that f is continuous iff the composition map $\pi_{\lambda} \circ f : y \to X_{\lambda}$ is continuous.

Or

Let y_0 be a fixed element of Y and let $A = X \times \{y_0\}$. Then show that the restriction f_n of π_X to A is a homeomorphism of the subspace A of $X \times Y$ onto X, also show that restriction f_B of π_Y to $B = \{x_0\} \times Y$ into Y is a homeomorphism, where $x_0 \in X$.

Unit-III

3. Show that a space *X* is metrizable if and only if *X* is regular and has a basis that is countably locally finite.

Or

Prove that a space X is metrizable if and only if it is a paracompact Hausdorff space that is locally metrizable.

Unit-IV

4. Prove that a topological space (*X*, *T*) is compact if and only if each not in *X* has a cluster point.

Or

Show that a filter F on a set X is an ultrafilter iff F contains all those subsets of X which intersect every member of F.

Unit-V

- **5.** Define contractible space and prove the following:
 - (i) Space X is contractible if and only if for any space Y, any two continuous maps $f: Y \rightarrow X$ and $g: Y \rightarrow X$ are homotopic.
 - (ii) Space X is contractible iff $f: X \to Y$ is homotopically equivalent to a one point space.

Or

State and prove the fundamental theorem of Algebra.