G-2/233/21

Roll No.

M.Sc. II Semester Examination, 2021 MATHEMATICS

Paper IV

(Advanced Complex Analysis-II)

Time: 3 Hours] [Max. Marks: 80

Note: All questions are compulsory. Question Paper comprises of 3 sections. Section A is objective type/multiple choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTIONA

 $1 \times 10 = 10$

(Objective Type Questions)

- 1. Define Riemann's Functional Equation.
- **2.** Write Legendre's duplication formula.
- **3.** Define Schwarz's reflexion principle.
- **4.** Define complete analytic function.
- **5.** Define Green's function.
- **6.** Define Hormonic function.
- **7.** Write Borel theorem.
- **8.** Define exponent of convergence of sequence $\{z_n\}$.
- 9. Define univalent functions.
- **10.** Give statement of the Great Picard theorem.

_ ,

SECTION B

 $5 \times 4 = 20$

(Short Answer Type Questions)

Note: Attempt one question from each unit.

Unit-I

1. Prove that
$$T(z) = \lim_{n \to \infty} \frac{n/n^2}{z(z+1)....(z+n)}$$
.

Or

If
$$R_e z > 1$$
, then prove that $G(z) = \prod_{n=1}^{\infty} \left(\frac{1}{1 - P_n^{-z}} \right)$ where $\{P_n\}$ is the sequence of prime numbers.

Unit-II

2. Show that the series :

(i)
$$\sum_{n=0}^{\infty} \frac{2^n}{z^n + 1}$$
 and (ii) $\sum_{n=1}^{\infty} \frac{(z - i)^n}{(z - i)^{n+1}}$

are analytical continuation of each other.

Or

Show that there cannot be more than on continuation of an analytic function f(z) into the same domain.

Unit-III

3. State and prove mean value theorem.

G-2/233/21

P.T.O.

Prove that the Poisson kernel $P_r(\theta)$ satisfies the following property : $\frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta) d\theta = 1$.

Unit-IV

4. Write the entire function $\sin z$ and $\cos z$ as canonical product.

Or

Find the order of function cos z.

Unit-V

5. Let f be an analytic function in the disc B(a, r) such that $|f'(z) - f'(a)| < |f'(a)| \forall z \in B(a, r)$. Then show that f is one-one.

Or

Let f be an entire function that omits two values. Then prove that f is a constant.

SECTION C

 $10 \times 5 = 50$

(Long Answer Type Questions)

Note: Attempt one question from each unit.

Unit-I

1. Let K be a compact subset of the region G_1 . Then prove that there are straight line segments γ_1 ,

G-2/233/21

P.T.O.

 $\gamma_2, \ldots, \gamma_n$ in G-K such that for every function f in H (G)

$$f(z) = \sum_{k=1}^{n} \frac{1}{2\pi i} \int_{\gamma_k} \frac{f(w)}{w - z} dW \ \forall \ z \in K.$$

The line segment from a finite number of closed polygons.

Or

State and prove Weierstrass Factorization theorem.

Unit-II

2. Show that the function $f_1(z) = 1 + z + z^2 + z^3 + \dots$ can be obtained outside the circle of convergence of the power series.

Or

Prove that unit circle |z| = 1 is natural boundary of the function $f(z) = \sum_{n=0}^{\infty} z^{n!}$.

Unit-III

3. Let G be a region and let $a \in \partial_{\infty}G$ such that there is a barrier for G at a. If $f:\partial_{\infty}G \to R$ is continuous and u is the person function associated with f, then $\lim_{z\to a}u(z)=f(a)$.

G-2/233/21

Let G be a region and let u and v be two continuous real-valued function of G that have MVP. If for each point a in the extended bounded $\partial_{\infty}G \lim_{z\to a}\sup u(z) \leq \lim_{z\to a}\inf v(z)$

Then prove that either $u(z) < v(z) \forall z \in G \text{ or } u = v$.

Unit-IV

4. Let f(z) be analytic in closed disc $|z| \le R$. Assume that $f(0) \ne 0$ and *no* zeros of f(z) lie on |z| = R. If z_1, z_2, \ldots, z_n are the zeroes of f(z) in the open disc |z| < R, each repeated as often as its multiplicity, then

$$\log |f(0)| = -\sum_{i=1}^{n} \log \left(\frac{R}{|z_i|}\right) + \frac{1}{2\pi} \int_0^{2\pi} \log |f(Re^{i\phi})| d\phi.$$

$$Or$$

State and prove Hadmard's Factorization Theorem.

Unit-V

5. State and prove Montel Caratheodory theorem.

Or

Let,
$$f \in \varphi$$
 and $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, then

(a)
$$|a_2| \le 2$$
 and (b) $f(v) \supset D\left(0, \frac{1}{4}\right)$

then second assertion say's that f(v) contains all W with $|W| < \frac{1}{4}$.

* * * * * C * * * * *