M.Sc. II Semester Examination, 2021 MATHEMATICS

Paper V (Advanced Discrete Mathematics-II)

Time : 3 Hours]

[Max. Marks : 80

Note : All questions are compulsory. Question Paper comprises of 3 sections. Section A is objective type/multiple choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTIONA 1×10=10

(Objective Type Questions)

Note : Choose the one correct answer :

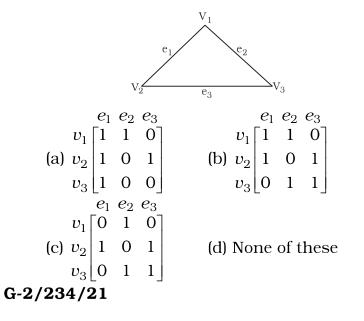
1. The maximum number of edges in a simple graph with *n* vertices is :

(a)
$$\frac{n(n+1)}{2}$$
 (b) $\frac{n(n-1)}{2}$
(c) $\frac{n^2}{2}$ (d) $\frac{(n^2-1)}{2}$

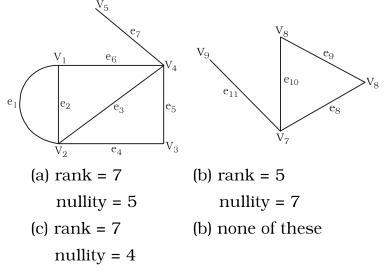
2. A complete bipartite graph $K_{m, n}$ are Euler graphs if :

(a) m and n both are even

(b) m and n both are odd


P.T.O.

(c) m odd and n even


(d) m even and n odd.

- **3.** A graph is said to be tree if : (a) It is connected

 - (b) It has *n* vertices and (n 1) edges
 - (c) It is minimally connected
 - (d) It has all above properties
- **4.** A spanning tree of a graph is a tree which contains :
 - (a) All the edges of the graph
 - (b) All the vertices of the graph
 - (c) Some vertices of the graph
 - (d) Some vertices and some edges
- **5.** The adjancency matrix of the given graph is :

- **6.** If *G* is a connected planer graph having *e* edges and *v* vertices where $u \ge 3$, select the correct option :
 - (a) $v \le 3e 6$ (b) $e \le 3u - 6$
 - (c) $e \le 2v 6$ (d) None of these
- 7. Rank and nullity of the following disconnected graph :

- **8.** Two states are called 0-equivalent if :
 - (a) Both states have input and same output
 - (b) Both states have input
 - (c) Both states have same output
 - (d) Next state is 1-equivalent
- **9.** In Moore machine choose the correct option :
 - (a) The output function depends on present state and current input P.T.O.

G-2/234/21

[4]

- (b) The output function depends only current input
- (c) The output function depends only present state

(d) None of these

10. The arrow indicate in a finite state machine : (a) accepting state (b) initial state (c) rejecting state (d) none of these

SECTION B 5×4=20

(Short Answer Type Questions)

Note : Attempt one question from each unit.

Unit-I

1. Show that the maximum number of edges in a complete bipartite graph of *n* vertices is $\frac{n^2}{4}$.

Or

What is the maximum number of vertices in a graph with 35 edges and all vertices are of degree at least 3.

Unit-II

2. Define cut sets of a graph and show that every cut set in a connected graph *G* contains at least one branch of every spanning tree of G.

Or

Explain the path matrix of a graph. Give an example.

Unit-III

3. Show that every connected graph with *n* vertices and (n - 1) edges is a tree.

Or

Explain Binary search tree.

Unit-IV

4. Explain a non-deterministic finite automation and give one example.

Or

Explain finite state machines and their transition table and diagrams.

Unit-V

5. Find a deterministic acceptor equivalent to $M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\}) \delta$ is given in table :

State table

States/ Σ	а	b
$\rightarrow q_0$	q_0, q_1	q_2
q_1	q_0	q_1
q_2		$ q_0, q_1 $

P.T.O.

Or

Explain the Turing Machine.

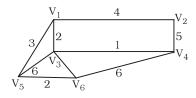
SECTION C

 $10 \times 5 = 50$

(Long Answer Type Questions)

Note : Attempt one question from each unit.

Unit-I

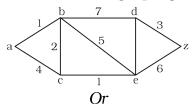

1. Let *G* be a simple graph with *n* vertices. If *G* has *k* components, then show that maximum number of edges that *G* can have $\frac{(n-k)(n-k+1)}{2}.$

Or

Let *G* be a connected planar graph with *v* vertices and *e* edges and let *r* be the number of regions in a planar representation of *G*. Then show that v - e + r = 2.

Unit-II

2. Explain the Kruskal algorithm and find the minimal spanning tree for the graph


[7]

Or

A tree has 2n vertices of degree 1, 3n vertices of degree 2 and n vertices of degree 3. Determine the number of vertices and edges in the tree.

Unit-III

3. Apply Disjkstra algorithm to find the shortest path from *a* to *z* in the graph given below :

Explain the tree traversals and give example for each one.

Unit-IV

4. For the finite state machine shown below :

	State	Input		Output	
		0	1		
	$\Rightarrow A$	F	В	0	
	В	D	C	0	
	C	G	В	0	
	D	E	A	1	
	E	D	A	0	
	F	Α	G	1	
	G	С	Н	1	
	Н	A	Н	1	
G-2/234/	21				P.T.C

(a) List all 0-equivalent states.

(b) Find all equivalent states and obtain an equivalent finite state machine with the smallest number of states.

Or

Minimize the machine whose state table is given below :

State	Input		Output
	0	1	
$\Rightarrow S_0$	S ₃	S_6	1
S_{l}	S_4	S_2	0
S_2	S_4	S_{l}	0
S_3	S_2	S_0	1
S_4	S_5	S_0	1
S_5	S_3	S_5	0
S_6	S_4	S_2	1

Unit-V

5. Consider the Moore machine describe by the transition table. Construct the corresponding Mealy machine :

[9]

Moore Machine

Present	Next	Output		
state	<i>a</i> = 0	a = 1		
$\rightarrow q_0$	q_3	q_1	0	
$q_{ m l}$	q_1	q_2	1	
q_2	q_2	q_3	0	
q_3	q_3	q_{0}	0	
Or				

Consider the Mealy machine described by the given transition table. Constuct a Moore machine which is equivalent to the Mealy machine.

Next State				
Present	Input $a = 0$		Inpu	t a = 1
State	State	Output	State	Output
$\rightarrow q_1$	q_3	0	q_2	0
q_2	q_1	1	q_4	0
q_3	q_2	1	q_1	0
q_4	q_4	1	q_3	0

Mealy Machine
