G-3/330/21

Roll No.....

M.Sc. III Semester Examination, April-2021

MATHEMATICS

Paper I

(Integration Theory and Functional Analysis-I)

Time : 3 Hours]

[Maximum Marks : 80

Note : All questions are compulsory. Question Paper comprises of 3 sections. Section A is objective type/Multiple Choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTION 'A' 1×10=10

(Objective Type/Multiple Type Questions)

Choose the correct answer :

- 1. What is the difference between a null set and a set of measure zero ?
- 2. Define comple measure space.
- **3.** What do you mean by distribution function ?
- 4. Define simple function.

- 5. Define regular measure.
- 6. Give an example of Baire and a Borel set.
- 7. Define bicontinuous function.
- 8. Define reflexive space.
- 9. What is difference between weak and weak* convergence.
- **10.** Define dual spaces.

(Short Answer Type Questions)

Note : Answer the following questions in 250 words.

1. Show that the union of a countable collection of negative sets is negative.

Or

Set (X, B, μ) as a finite measure space and g an integrable function such that for some constant M,

 $|g \phi d\mu| < M \|\phi\|_{p}$

for all simple functions ϕ . Then $g \in L^q$.

2. Set $\{(A_i X B_i)\}$ be a countable disjoint collection of measurable rectangles whose union is a measurable rectongle A × B. Then

$$\lambda (\mathbf{A} \times \mathbf{B}) \sum_{i=i}^{\infty} = \lambda (\mathbf{A}_i \times \mathbf{B}_i)$$

P. T. O.

G-3/330/21

Set y be a point of Y and E a set in R σ s. Then E_y is a measurable rectangle of X.

3. Show that every compact Baire set is a G_8 .

Or

Every σ - bounded open set is a Borel set.

4. Define equivalent norm. Show that on a finite dimensional linear space X, any norm $\|\cdot\|_2$ is equivalent to any other norm $\|\cdot\|_2$.

Or

Show that the function space C [a, b] is a Banach space.

5. (a) Show that B (X, Y) is Banach space if Y is a Banach space.

Or

(b) Define weak* convergence and show that weak limit of a sequence is unique.

SECTION 'C' 10×5=50 (Long Answer Type Questions) Note : Answer the following questions in 500 words.

1. State and prove Radon Nikodym theorem.

G-3/330/21

P. T. O.

J

Or

State and prove Riesz representation theorem.

2. Define measurable subsets. Let E be a measurable subset of X×Y such that $\mu \times \upsilon$ (E) is finite. Then for almost all x the set E_x is a measurable subset of Y. The function g defined by

 $g(x) = v(E_x)$

is a measurable function defined for all most all x and

 $g d\mu = \mu \times \upsilon$ (E).

Or

State and prove Fubixi theorem.

- 3. Set μ be a Baire measure on a locally compact space X and E a σ -bounded Baire set in X. Then for $\epsilon > 0$;
 - (i) There is a σ compact open set O with

 $E \subset O$ and $\mu (O \sim E) < \varepsilon$

(ii) $\mu E = \sup \{\mu K : K \subset E, K \text{ a compact } G_8\}.$

Or

State and prove Riesz-Markov theorem.

G-3/330/21

[5]

4. Let X be a normed linear space. The closed unit ball

 $B = \{x \in X : ||x|| \le |1\}$

in X is compact if any only if X is finite dimensional.

Or

Define Quotient space. Set M be a closed linear subspace of X. Then X/M is Banach space if X is Banach.

5. Show that C* is isometrically isomorphic to l_1 .

Or

What do you mean by strong and weak convergence? Show that if X is finite dimensional then W each convergence implies strong convergence.

00000c00000