G-3/332/21 Roll No..... M.Sc. III Semester Examination, April-2021 MATHEMATICS Paper III (Wavelets-I) [Maximum Marks: 80 Time : 3 Hours] Note: All questions are compulsory. Question Paper comprises of 3 sections. Section A is objective type/Multiple Choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice. SECTION 'A' (Objective Type Questions) Answer all the questions : $1 \times 10 = 10$ **1.** What is Gabor basis ? 2. Construct the wavelets of Lemarie and Meyer. **3.** Prove that $\left\{\sqrt{2}\sin\left(\frac{2k+1}{2}\pi x\right), k=0, 1, 2... \text{ is an orthonormal}\right\}$ basis of $L^{2}([0, 1])$. 4. Define the folding operator $F : L^2(\mathbb{R}, \mathbb{C}) \to L^2(\mathbb{R}^+, \mathbb{C}^2)$. 5. Define MRA with a Riesz basis. **6.** Define the low pass filter associated with scaling function ψ . 7. Define band-limited function. 8. What is frame on a Hilbert space ? 9. Define Franklin wavelet.

10. Define splines of order *n*.

P.T.O.

SECTION 'B' $4 \times 5 = 20$

(Short Answer Type Questions)

Note : Answer all the following questions.

1. Give an example of an orthonormal sequence on $T = [-\pi, \pi]$.

Or

Give an example of an orthonormal wavelet on R.

2. Prove that $\{2C_{i,k}^{-}: k \ge 0\}$ is an orthonormal basis for $P_{-i}^{+}(L^2(\mathbb{R}))$.

Or

Find values of $\lim_{x\to 0^+} f^{(n-k)}(x)$ when (n - k) is even and odd respectively.

3. Let V_j be the space of all functions in $L^2(\mathbb{R})$ which are constant on intervals of the form $(2^{-j} k, 2^{-j} (k + 1)]$, $k \in \mathbb{Z}$. Then prove that $\{V_j : j \in \mathbb{Z}\}$ is an MRA.

Or

Suppose that $g \in L^2(\mathbb{R})$ and that $\{g(-k) : k \in \mathbb{Z}\}$ is an orthonormal system, then prove that $|\operatorname{supp}(\widehat{g})| \ge 2\pi$.

4. Write necessary and sufficient conditions for the orthonormality of the system $\{\psi_{ik}; j, k \in \mathbb{Z}\}$.

Or

Suppose that $f \in L^2(\mathbb{R})$ and \hat{f} has a support contained in I = (a, b), where $b - a \leq 2^{-J}\pi$ and $I \cap [-\pi,\pi] = \phi$, then prove that for all $j \in \mathbb{Z}$,

$$(\mathbf{Q}_{j}f)^{(\xi)}=f(\xi)|\hat{\psi}(2^{-j}\xi)|^{2}$$
 a.e. on I.

[5]

5. If $f \in L^2(T)$, then prove that $\{f, Uf, \dots, U^N f\}$, where $U \equiv U_j$ is an orthonormal system if and only if $\sum_{l \in Z} ||F[f]| (n+2^j l)|^2 = 2^{-j}$ for $n = 0, 1, \dots, N = 2^j - 1$.

Or

Prove that $f \in C_j^{(m)}$ if and only if $f \in B_{j+1}^{(m)}$, F[f](0) = 0 and $\sum_{l \in \mathbb{Z}} \frac{F[f](n+2^i l)}{(n+2^j l)^{m+1}} = 0$, for $n = 1, 2; \dots, N = 2^j - 1$.

0 0 0 0 0 c 0 0 0 0

5. Prove that the basic spline of order n,Δ^n , satisfies following property :

$$\hat{\Delta}^{n}(\xi) = e^{-i\frac{n+1}{2}\xi} \left[\frac{\sin\left(\frac{\xi}{2}\right)}{\xi/2}\right]^{n+1}$$

Or

If C_j is the orthogonal complement of B_j in B_{j+1} , then prove that there exists $ag_j \in C_j$ such that $\{g_j, Ug_j^N\}$ is an orthonormal basis for C_j , $j = 0, 1, 2, \dots$.

$$SECTION'C' 10 \times 5 = 50$$
(Long Answer Type Questions)

Note : *Answer the following question.*

1. State and prove Balian-Low theorem.

Or

Let I = [α , β]; then show that $f \in H_1 = P_1(L^2(R))$ if and only if $f = b_1S$, where $S \in L^2(R)$, b_1 is the bell function associated with I and S is even or odd on [$\alpha - \varepsilon$, $\alpha + \varepsilon$] according to the choice of polarity at α , and even or odd on [$\beta - \varepsilon'$, $\beta + \varepsilon'$] according to the choice of polarity at β .

2. If the polarities are (-, -), (+, -) and (+, +) at (α, β) , then prove that the same is true for :

(i)
$$\left\{\sqrt{\frac{2}{|I|}}b_1(x)\cos\left(\frac{2k+1}{2}\frac{\pi}{|I|}(x-\alpha)\right)\right\}$$
, $k = 0, 1, 2, \dots$

(ii)
$$\left\{\sqrt{\frac{1}{|I|}}b_1(x), \sqrt{\frac{2}{|I|}}b_1(x)\cos(k\frac{\pi}{|I|}(x-\alpha))\right\}, k = 1, 2, 3, \dots$$

G-3/332/21

If $U = F^{-1}AF$ and $U^{\infty} = F^{-1}A*F$, then show that U is unitary. Also

 $(U^*f)(x) = \begin{cases} \overline{S(x)}.f(x) - S(-x)f(-x), x > 0; \\ S(-x)f(x) + \overline{S(x)}f(-x), x < 0; \end{cases}$

prove that :

and $U^{\infty} X_{[0,\infty]} U = P_{0,\varepsilon}^+$, where $P_{0,\varepsilon}^+$ has its usual meaning.

3. Let ψ be on $L^{\infty}(\mathbb{R})$ function such that :

$$|\psi(x)| \leq \frac{C}{(1+|x|)^{1+\varepsilon}}$$
 a.e. for some $\varepsilon > 0$.

If $\{\psi_{j,k} : j, k \in \mathbb{Z}\}$ is an orthonormal system in L²(R), then prove that $\int_{\mathbb{R}}^{\mathbb{R}} \psi(x) dx = 0$.

Or

For any integer r = 0, 1, 2,... there exists an orthonormal wavelet ψ with compact support such that ψ has bounded derivatives up to order r. Prove it.

4. If ψ is a band-limited orthonormal wavelet, then prove that $\sum_{j \in \mathbb{Z}} |\hat{\psi}(2^i \xi)|^2 = 1$ for a.e. $\xi \in \mathbb{R} - \{0\}$.

Or

If ψ is a band-limited orthonormal wavelet such that $|\widehat{\psi}|$ is continuous at 0, then prove that $|\widehat{\psi}| = 0$ a.e. in an open neighbourhood of the origin.

G-3/332/21