Roll No.

M.Sc. IV Semester Examination, 2021 MATHEMATICS

Paper II

(Partial Differential Equations Mechanics-II)

Time: 3 Hours] [Max. Marks: 80

Note: All questions are compulsory. Question Paper comprises of 3 sections. Section A is objective type/multiple choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTIONA

 $1 \times 10 = 10$

(Objective Type Questions)

Choose the correct answer:

- **1.** The particular solution of the Hamilton-Jacobi Equation, (using separation of variables method) $u_t + H(Du) = 0$ in $\mathbb{R}^n \times (0, \infty)$ is :
 - (a) $u(x, t) = \omega(x) \mu t + b$
 - (b) $u(x, t) = \omega(x) + \mu t b$
 - (c) $u(x, t) = a \cdot x H(a)t + b$
 - (d) $u(x, t) = a \cdot x + H(a)t b$.

2. THe following statement

"Assume $u \in L'(R^n) \cap L^2(R^n)$, $\hat{u}, \hat{u} \in L^2(R^n)$

and
$$\|\stackrel{\wedge}{u}\|_{L^2(R^n)} = \|\stackrel{\wedge}{u}\|_{L^2(R^n)} = \|u\|_{L^2(R^n)}$$
" states :

- (a) Plancherel's Theorem
- (b) Bessel's Potential
- (c) Fundamental solution of heat equation
- (d) None of these.
- **3.** Simple pendulum with rigid support is an example of:
 - (a) Conservative and Bilateral constraint
 - (b) Rheonomic and Holonomic constraint
 - (c) Dissipative and Nonholonomic constraint
 - (d) None of these.
- **4.** Conservation Theorem for Energy is :
 - (a) T + V = Constant
 - (b) T V = Constant
 - (c) 2T + V = Constant
 - (d) None of these.
- **5.** For dynamical variables $u(p_j, q_j, t)$, $v(p_j, q_j, t)$ and $w(p_j, q_j, t)$, the identity

$$[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0$$

- is known as:
- (a) Hamilton-Jacobi Identity

G-4/429/21

- (b) Nelson-Jacobi Identity
- (c) Jacobi-Poisson Identity
- (d) None of these.
- **6.** For Minimum surface of Revolution, the required formula is:

(a)
$$x = c_1 \cosh\left(\frac{y - c_2}{a}\right)$$
 (b) $x = c_1 \sinh\left(\frac{y - c_2}{a}\right)$

(c)
$$x = c_1 \tanh\left(\frac{y - c_2}{a}\right)$$
 (d) $x = c_1 \coth\left(\frac{y - c_2}{a}\right)$

- **7.** Define any one :
 - (a) Configuration space (b) Phase space
 - (c) State space
- **8.** $\delta \int_{t_1}^{t_2} L \, dt = 0$ is known as :
 - (a) Hamilton's Principle
 - (b) Principle of Least Action
 - (c) Jacobi Equation
 - (d) Hamilton-Jacobi Equation
- 9. The generating function used in Hamilton-Jacobi equation is:

 - (a) $F_1(q_i, \theta_j, t)$ (b) $F_2(q_i, p_j, t)$

 - (c) $F_3(p_i, \theta_i, t)$ (d) $F_4(p_i, p_i, t)$
- G-4/429/21

P.T.O.

10. Harmilton-Jacobi equation for a particle of mass m moving in a force field with its potential given

by
$$V = -\frac{K\cos\theta}{r^2}$$
 is:

(a)
$$\frac{1}{2^{m}} \left[\left(\frac{\partial s}{\partial r} \right)^{2} + \frac{1}{r^{2}} \left(\frac{\partial s}{\partial \theta} \right)^{2} + \frac{1}{r^{2} \sin^{2} \theta} \left(\frac{\partial s}{\partial \theta} \right)^{2} \right] - \frac{K \cos \theta}{r^{2}} + \frac{\partial s}{\partial t} = 0$$

(b)
$$\left(\frac{\partial s}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial s}{\partial \theta}\right)^2 + \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial s}{\partial \theta}\right)^2 = 0$$

(c)
$$\left(\frac{\partial s}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial s}{\partial \theta}\right)^2 = 0$$

(d) None of these.

SECTION B $4 \times 5 = 20$

(Short Answer Type Questions)

Note: Attempt all questions.

Unit-I

1. Solve the Hamilton-Jacobi equation $u_t + H(Du)$ = 0 in $R_n \times (0, \infty)$ using separation of variables method.

Or

Define Fourier Transform on *L*'.

G-4/429/21

Unit-II

2. Derive Lagrange's equation from the Lagrangian function $L(q_k, \dot{q}_k, t) = \dot{q}_k q_k - \sqrt{1 - \dot{q}_k^2}$.

Or

Find the Lagrangian function for a simple pendulum and obtain the equation of its motion.

Unit-III

3. Prove that $\frac{d}{dt}[u,v] = \left[\frac{du}{dt},v\right] + \left[u,\frac{dv}{dt}\right]$.

Or

State and prove Poisson's theorem.

Unit-IV

4. Find a complete solution of the Euler-Lagrange

equation for
$$\int_{x_1}^{x_2} \left[y^2 - \left(\frac{dy}{dx} \right)^2 - 2y \cosh x \right] dx$$
.

Or

State Hamilton's Principle.

Unit-V

5. State Poincare-Cartan Integral Invariant.

Or

State Lee Hwa-chung theorem.

G-4/429/21

P.T.O.

SECTION C

 $10 \times 5 = 50$

(Long Answer Type Questions)

Note: Attempt all questions.

Unit-I

1. Define soliton. Find soliton solution of the Korteweg-de Vries equation $u_t + 6uu_x + u_{xxx} = 0$ in $R \times (0, \infty)$.

Or

State and prove Plancherel's theorem.

Unit-II

2. Establish Lagrange's equations of motion of the second kind.

Or

State and prove Routh's equations.

Unit-III

3. Define Geodesics. Find the shortest distance between two points in a plane.

Or

FInd the geodesics on a sphere.

Unit-IV

- **4.** Derive Hamilton's Principle from Newton's equation.
- G-4/429/21

[7]

Or

Derive Hamilton's canonical equations using Hamilton's principle.

Unit-V

5. Use Hamilton-Jacobi equation to discuss the motion of a massive particle in a plane under a central force.

Or

Find the relation between Poisson Bracket and Lagrange Bracket.

* * * * * C * * * * *