H-98-21

Roll No.

ANNUAL EXAMINATION, 2021

B.C.A. I

B.C.A. 101

Paper I

(Discrete Mathematics)

Time : 3 Hours]

[Maximum Marks : 80

Note : Attempt any two parts from each unit. All questions carry equal marks.

Unit-I

- 1. (a) Prove that :
 - $(p \Leftrightarrow q) \land (q \Leftrightarrow r) \Rightarrow (p \Leftrightarrow r)$ is a tautology.
 - (b) Show that :

 $\sim (p \implies q) \equiv p \land (\sim q).$

(c) Explain the universal and existential quantifiers and also explain its negation.

Unit-II

2. (a) Prove the following identity in a Boolean algebra (B, +, ., ') $(a + b). (a' + c) = a.c + a'.b \forall a.b, c \in B.$ [2]

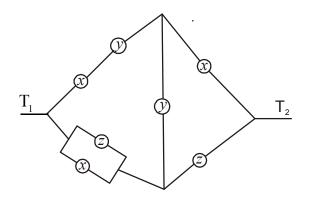
(b) Draw the logic circuit for the following expression.

 $f \equiv (a + b). (a' + b' + c'). (b'. c).$

(c) Draw a circuit for the following Boolean function and replace it by a simpler one :

F $(x, y, z) = x \cdot z + [y \cdot (y' + z) \cdot (x' + x \cdot z')]$

Unit-III


3. (a) Write the following functions into conjunctive normal form

$$f(x, y, z) = x \cdot y' + xz + xyz$$

(b) Change the following function to disjunctive normal form :

f(x, y, z, t) = [x'. y + x.y.z' + xy' z + t].

(c) Simplify the following circuit :

P. T. O.

H-98/21

[3]

Unit-IV

- 4. (a) Show that the relation "x R y ⇔ x y is divisible by 3" where x, y ∈ I defined in the set of integer I is an equivalence relation.
 - (b) Let A = {-2, -1, 0, 1, 2} and f : A → Z (set of integers) be given by f(x) = x² 2x 3 find (a) the range of f, (b) pre-images of 6, -3, -5.
 - (c) Let $f : A \to B$ if function f is one-one onto, then show that f^{-1} is also one-one onto.

Unit-V

- 5. (a) Show that a complete graph with five vertices is not a planar graph.
 - (b) Show that a simple graph with *n* vertices has $\frac{n(n-1)}{2}$ maximum number of edges.
 - (c) Explain the spanning tree of a given graph.

00000 c 00000