# I/50-20

Roll No. ....

| Annual Examination, 2022<br>B.Sc. Part II<br>MATHEMATICS<br>Paper II<br>(Differential Equations) |                                     |                          |                                         |
|--------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|-----------------------------------------|
|                                                                                                  |                                     | Time : 3 Hours ]         | [ MAXIMUM MARKS : 50                    |
|                                                                                                  |                                     | नोट: खण्ड 'अ' वस्तुनिष्ठ | प्रकार का तथा अनिवार्य है। उसे          |
|                                                                                                  |                                     | 3                        | <b>पृष्ठ</b> पर लिखा जाये। खण्ड 'ब' लघु |
|                                                                                                  |                                     | उत्तरीय प्रकार का और     | खण्ड 'स' दीर्घ उत्तरीय प्रकार का है।    |
| Note : Section 'A' is Objec                                                                      | tive type and is compulsory. It     |                          |                                         |
| should be written                                                                                | on the <b>first page</b> of Answer- |                          |                                         |
| book. Section 'B' is                                                                             | Short answer type and Section       |                          |                                         |
| 'C' is Long answer                                                                               | type.                               |                          |                                         |
| <b>ख</b> ण्ड 'अ'                                                                                 | (Section 'A')                       |                          |                                         |
| बहुविव                                                                                           | कल्पीय प्रश्न                       |                          |                                         |
| (Multiple Ch                                                                                     | oice Guestions)                     |                          |                                         |
| सही उत्तर चुनिए—                                                                                 | 1×10=10                             |                          |                                         |
| Choose the correct                                                                               | answer :                            |                          |                                         |
| (i) एक अवकल समीक                                                                                 | त्रण फुक्सियन (Fuchsian) कहलाता     |                          |                                         |
| है, यदि इसकी सर्भ                                                                                | ो विशिष्टताएँ होंगी—                |                          |                                         |
| (अ) अनियमित                                                                                      |                                     |                          |                                         |
| (ब) नियमित                                                                                       |                                     |                          |                                         |
| (स) नियमित एवं                                                                                   | अनियमित दोनों                       |                          |                                         |
| (द) उपर्युक्त में से                                                                             | कोई नहीं।                           |                          |                                         |
|                                                                                                  | P.T.O.                              |                          |                                         |

A differential equation is called Fuchsian if all its singularities are :

(a) irregular

(b) regular

(c) both regular and irregular

(d) none of the above.

(ii) 
$$\frac{d}{dx}[x^n J_n(x)]$$
 का मान होगा—  
(अ)  $x^{n-1}J_n(x)$  (ब)  $x^{n+1}J_n(x)$   
(स)  $x^n J_{n-1}(x)$  (द)  $x^n J_{n+1}(x)$ .  
The value of  $\frac{d}{dx}[x^n J_n(x)]$  is :

(a) 
$$x^{n-1}J_n(x)$$
 (b)  $x^{n+1}J_n(x)$   
(c)  $x^nJ_{n-1}(x)$  (d)  $x^nJ_{n+1}(x)$ .

(iii) L (sin *at*) का मान होगा—

(अ) 
$$\frac{p}{p^2 + a^2}$$
 (ब)  $\frac{a}{p^2 - a^2}$   
(स)  $\frac{a}{\sqrt{p^2 - a^2}}$  (द)  $\frac{a}{p^2 + a^2}$ 

The value of L (sin *at*) is :

(a) 
$$\frac{p}{p^{2} + a^{2}}$$
 (b)  $\frac{a}{p^{2} - a^{2}}$   
(c)  $\frac{a}{\sqrt{p^{2} - a^{2}}}$  (d)  $\frac{a}{p^{2} + a^{2}}$ 

- (iv) यदि N(t), t का एक फलन इस प्रकार है कि  $\int_0^t N(t) dt$ = 0,  $\forall t > 0$  तब N(t) कहलाता है—
  - (अ) शून्य फलन
  - (ब) इकाई फलन
  - (स) चरघातांकी फलन
  - (द) आवर्ती फलन।

If N(t) is a function of t such that  $\int_0^t N(t)dt = 0$ ,  $\forall t > 0$  then N(t) is called :

- (a) Null function
- (b) Unit function
- (c) Exponential function
- (d) Periodic function.

I/50-22

P.T.O.

[4]

- (v)  $z = f\left(\frac{y}{x}\right)$  से स्वेच्छ फलन f को विलोपित करने पर प्राप्त आंशिक अवकल समीकरण होगा—
  - $(\mathfrak{A}) px + qy = 0 \quad (\overline{\mathfrak{A}}) px qy = 0$
  - $(\exists) p^2x + q^2y = 0 \ (\exists) px^2 + qy^2 = 0$

Obtain the partial differential equation by eleminating the arbitrary function of form

- $z = f\left(\frac{y}{x}\right) \text{ is :}$ (a) px + qy = 0 (b) px qy = 0(c)  $p^2x + q^2y = 0$  (d)  $px^2 + qy^2 = 0$ .
- (vi) अवकल समीकरण *z* = *px* + *qy* + *pq* का विचित्र हल होगा—

(3) 
$$z = xy$$
 (a)  $z = \frac{x}{y}$   
(c)  $z = \frac{-x}{y}$  (c)  $z = -xy$ 

Singular solution of the differential equation z = px + qy + pq is :

(a) 
$$z = xy$$
 (b)  $z = \frac{x}{y}$   
(c)  $z = \frac{-x}{y}$  (d)  $z = -xy$ .

I/50-22

(vii) समीकरण 
$$y \frac{\partial^2 z}{\partial x^2} - x \frac{\partial z}{\partial y} + z^2 = 0$$
 है—  
(अ) द्वितीय कोटि का रैखिक  
(ब) प्रथम कोटि का अरैखिक  
(ब) प्रथम कोटि का अरैखिक  
(स) द्वितीय कोटि का अरैखिक  
(n) i हीe d ks/ d kj § kd A  
Equation  $y \frac{\partial^2 z}{\partial x^2} - x \frac{\partial z}{\partial y} + z^2 = 0$  is :  
(a) linear of second order  
(b) non-linear of first order  
(c) non-linear of first order  
(d) linear of first order.  
(viii) समीकरण  $r - a^2t = x^2$  का विशिष्ट समाकल होगा—

(अ) 
$$\frac{x^4}{12}$$
 (ब)  $\frac{a^2x^2}{12}$   
(स)  $\frac{x^2}{24}$  (द)  $\frac{x^4}{6}$ 

Particular Integral of equation  $r - a^2 t = x^2$  is :



P.T.O.

- (ix) फलनक I[y(x)] के कोणांक फलन y(x) का विचरण δy बराबर होता है—
  - $(\Im) y(x) + y_1(x) \quad (\exists) y_1(x) y(x)$
  - (स)  $y(x) y_1(x)$  (द)  $y(x) 2y_1(x)$

The variation  $\delta y$  of angle function y(x) of the functional I[y(x)] is equal :

(a) 
$$y(x) + y_1(x)$$
 (b)  $y_1(x) - y(x)$ 

(c)  $y(x) - y_1(x)$  (d)  $y(x) - 2y_1(x)$ .

(x) चरमानी वक्र 
$$y = y(x)$$
 पर  $F_y - \frac{dFy'}{dx} = 0$  कहलाता है—

- (अ) जैकोबी समीकरण
- (ब) यूलर समीकरण
- (स) लीजेन्ड्रे समीकरण
- (द) यूलर-ऑस्ट्रोग्रैडस्की समीकरण।

$$F_y - \frac{dFy'}{dx} = 0$$
 on the extremizing curve  $y =$ 

y(x) is called :

- (a) Jacobi equation
- (b) Euler equation
- (c) Legendre equation
- (d) Euler Ostrogradsky equation.

I/50-22

खण्ड 'ब' (Section 'B')

लघु उत्तरीय प्रश्न 5×3=15

(Short Answer Type Questions)

**नोट**—सभी **पाँच** प्रश्न अनिवार्य हैं।

*Note :* All the *five* questions are compulsory.

1. 
$$\int_0^\infty e^{-ax} J_0(bx) \, dx = \frac{1}{\sqrt{a^2 + b^2}}$$
 सिद्ध कोजिए—

Prove that : 
$$\int_0^\infty e^{-ax} J_0(bx) dx = \frac{1}{\sqrt{a^2 + b^2}}$$



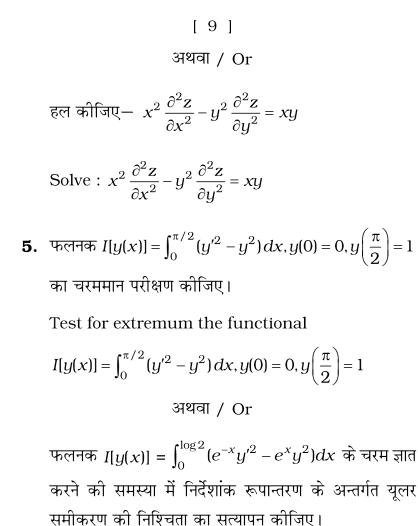
Show that all the roots of  $P_n(x) = 0$  are real, and lie between -1 and +1.

**2.** 
$$L\left\{\int_{0}^{t} \frac{\sin x}{x} dx\right\}$$
 का मान ज्ञात कीजिए।  
Find the value of  $L\left\{\int_{0}^{t} \frac{\sin x}{x} dx\right\}$ .

I/50-22

Р.Т.О.

अथवा / Or  
हल कीजिए : 
$$\frac{d^2y}{dt^2} + y = 0, y = 1, Dy = 0$$
 जब  $t = 0$ .  
Solve :  $\frac{d^2y}{dt^2} + y = 0, y = 1, Dy = 0$ , when  $t = 0$ .  
**3.** यदि  $z = f(x + ay) + \phi(x - ay)$  है तो सिद्ध कीजिए—  
 $\frac{\partial^2 z}{\partial y^2} = a^2 \frac{\partial^2 z}{\partial x^2}$   
If  $z = f(x + ay) + \phi(x - ay)$ , then prove that :  
 $\frac{\partial^2 z}{\partial y^2} = a^2 \frac{\partial^2 z}{\partial x^2}$   
अथवा / Or  
पूर्ण हल ज्ञात कीजिए :  $pq = xy$ .  
Find the complete integral :  $pq = xy$ .  
**4.** समीकरण  $(1 - x^2) \frac{\partial^2 z}{\partial x^2} - 2xy \frac{\partial^2 z}{\partial x \partial y} + (1 - y^2) \frac{\partial^2 z}{\partial y^2} + x \frac{\partial z}{\partial x}$ 


 $+3x^2yrac{\partial z}{\partial y}-2z=0$  का वर्गीकरण कीजिए।

Classify the equation :

$$(1 - x^{2})\frac{\partial^{2}z}{\partial x^{2}} - 2xy\frac{\partial^{2}z}{\partial x\partial y} + (1 - y^{2})\frac{\partial^{2}z}{\partial y^{2}} + x\frac{\partial z}{\partial x} + 3x^{2}y\frac{\partial z}{\partial y} - 2z = 0$$

I/50-22

[8]



Verify invariance of Euler's equation under coordinates transformation in the problem of finding the externals of the functional

$$I[y(x)] = \int_0^{\log 2} (e^{-x}y'^2 - e^xy^2) dx$$

**I/50—22** P.T.O.

[ 10 ]

# खण्ड 'स' (Section 'C')

### दीर्घ उत्तरीय प्रश्न 5×5=25

#### (Long Answer Type Questions)

**नोट**—सभी **पाँच** प्रश्न अनिवार्य हैं।

Note : All the *five* questions are compulsory.

**1.**  $J_n(x)$  के लिए जनक फलन प्राप्त कीजिए।

Find the generating function for  $J_n(x)$ .

दर्शाइए कि (1 – 2xz + z<sup>2</sup>)<sup>-1/2</sup> समीकरण 
$$z \frac{\partial^2(zv)}{\partial z^2}$$
  
+ $\frac{\partial}{\partial x} \left\{ (1-x^2) \frac{\partial v}{\partial x} \right\} = 0$  का एक हल है।

Show that  $(1 - 2xz + z^2)^{-1/2}$  is a solution of the

equation 
$$z \frac{\partial^2(zv)}{\partial z^2} + \frac{\partial}{\partial x} \left\{ (1-x^2) \frac{\partial v}{\partial x} \right\} = 0.$$

$$\int_0^1 x^{m-1} (1-x)^{n-1} dx = \frac{\overline{|m|} \overline{|n|}}{\overline{|m+n|}}$$

Using convolution theorem, prove that :

$$\int_0^1 x^{m-1} (1-x)^{n-1} dx = \frac{\overline{|m|n|}}{\overline{|m+n|}}$$

I/50—22

# [ 11 ]

अथवा / Or

निम्नलिखित फलन का लाप्लास रूपान्तरण ज्ञात कीजिए-

 $e^t \cosh 3t$ 

Find Laplace transformation of the following function :

 $e^t \cosh 3t$ 

- **3.** हल कोजिए—  $(x^2 yz) p + (y^2 zx)q = (z^2 xy)$ 
  - Solve :  $(x^2 yz) p + (y^2 zx)q = (z^2 xy)$ 
    - अथवा / Or

चारपिट विधि से पूर्ण हल कोजिए—  $z^2 = pqxy$ 

Solve completely by Charpit's method :  $z^2 = pqxy$ 

**4.** मोन्गे विधि से हल कीजिए—  $r = a^2 t$ 

Solve by Monge's method :  $r = a^2 t$ 

अथवा / Or

हल कोजिए—  $(D^2 + DD' + D' - 1)z = \sin(x + 2y)$ 

Solve :  $(D^2 + DD' + D' - 1)z = \sin(x + 2y)$ 

P.T.O.

I/50—22

5. फलनक: I[y(x)] = ∫<sub>0</sub><sup>1</sup>[y(x) + 2y'(x)]dx, y(x) ∈ C'[0, 1],
 वक्र y<sub>0</sub>(x) = x पर प्रथम कोटि के सामीप्य के अर्थ में संतत है।
 सिद्ध कीजिए।

Show that the functional :

 $I[y(x)] = \int_0^1 [y(x) + 2y'(x)]dx, \ y(x) \in C'[0, 1], \text{ is continuous on the curve } y_0(x) = x \text{ is sense of first order proximity.}$ 

# अथवा / Or

दो बिन्दुओं ( $x_1, y_1$ ) और ( $x_2, y_2$ ) को मिलाने वाले लघुत्तम वक्र को ज्ञात कीजिए।

Find the shortest curve Joining two points  $(x_1, y_1)$  and  $(x_2, y_2)$ .