G-1/162/22

Roll No.

I Semester Examination, January, 2022

M.Sc.

CHEMISTRY

Paper IV

(Basics of Spectroscopy)

Time: 3 Hours

[Max. Marks: 80

Note: All questions are compulsory. Question Paper comprises of 3 Sections. Section A is objective type/multiple choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTIONA

 $1 \times 8 = 8$

P.T.O.

(Objective Type/Multiple Choice Questions)

Choose the correct answer:

- **1.** The energies of E_1 and E_2 of two radiations are 25 eV and 50eV respectively. The relation between their wavelength, i.e. λ_1 and λ_2 will be :
 - (a) $\lambda_1 = \frac{1}{2}\lambda_2$ (b) $\lambda_1 = \lambda_2$
 - (c) $\lambda_1 = 2\lambda_2$ (d) $\lambda_1 = 4\lambda_2$

2. The rotational constant (B) of H³⁵Cl, H³⁷Cl and D³⁵Cl follows the order:

- (a) $H^{35}Cl > D^{35}Cl > H^{37}Cl$
- (b) $H^{35}Cl > H^{37}Cl > D^{35}Cl$
- (c) $D^{35}Cl > H^{35}Cl > H^{37}Cl$
- (d) $H^{37}Cl > H^{35}Cl > D^{35}Cl$

3. Highest occupied molecular orbital of HF is :

- (a) Bonding
- (b) Antibonding

(c) Ionic

(d) Nonbonding

4. The absorption at λ_{max} 279 nm in the UV spectrum of acetone is due to:

- (a) π - π * transition (b) n- π * transition
- (c) a-a* transition
- (d) π -a* transition

5. The spectroscopic ground state symbols and total number of electronic transitions of $[Ti(CH_2O)_6]^{2t}$ are:

- (a) 3 Tig and 2
- (b) 3 Arg and 3
- (c) 3 Tig and 3
- (d) 3 Arg and 2

G-1/162/22

6. Choose the correct answer for binding energy

- (I) and Kinetic energy:
- (a) Kinetic Energy = Hv I
- (b) Kinetic Energy = Hv + I
- (c) Kinetic Energy = $\frac{hv}{I}$
- (d) Kinetic Energy = $Hv \times I$

7. For a non-linear molecule like H₂O the number of vibrational modes are :

(a) 3

(b) 4

(c) 5

(d) 6

8. For CO_2 molecule :

- (a) All the vibrational modes are either IR or Raman active
- (b) The number of IR and Raman active vibrations will be the same
- (c) All vibraions are IR active
- (d) None of the above

SECTION B

 $6 \times 4 = 24$

(Short Answer Type Questions)

Note: Answer the following questions in **250** words.

Unit-I

1. Write notes on the following:

- (a) Born-oppenheimer approximation
- (b) Absorption of radiations

Or

The rotational constant for $H^{35}Cl$ is observed to be 10.5909 cm⁻¹. What are the values of B for $H^{37}Cl$ and $^2D^{35}Cl$?

Unit-II

2. Write notes on the following:

- (a) K and R bands
- (b) Chromophores and Auxochromes
- (c) Bathochromic and hypsochromic shifts.

Or

Explain the increasing order $a \to c$ of the λ_{max} for the following pyrrole derivatives :

Unit-III

- **3.** Write notes on the following:
 - (a) Frank-Condon Principle
 - (b) Koopman's Theorem.

Or

Describe electronic Spectra of Polyatomic molecules with two examples.

Unit-IV

4. Discuss the factors which affect the IR Absorption frequency, band positions and intensities of functional group.

Or

What are the advantages of Raman spectroscopy over IR spectroscopy?

SECTION C

12×4=48

(Long Answer Type Questions)

Note : Answer the following questions in **500** words.

Unit-I

1. (a) What is Selection Rule? Write down the selection rule for rotational, vibrational and electronic energy levels transitions.

G-1/162/22

P.T.O.

(b) Explain effect of isotopic substitution on the transition frequency intensity in Microwave Spectroscopy by taking example of HCl and DCl.

Or

Explain the following terms :

- (a) Dispersion
- (b) Reflection
- (c) Polarization
- (b) Scattering.

Unit-II

2. Explain Woodward-Fieser rule for polyenes and α - β unsaturated carbonyl compounds with suitable examples.

Or

- (a) Calculate the molar absorptivity, ϵ for a solution containing 1.0×10^{-3} mole per liter of solute. When the absorbance of a 1 cm cell was 1.5.
- (b) Explain stereochemical Factors in electronic spectroscopy.

G-1/162/22

Unit-III

- **3.** (a) Explain electronic spectra of polyatomic molecules with examples.
 - (b) Describe electronic spectra of Diatomic molecules and ions and draw MO diagram for homonuclear diatomic molecules.

Or

- (a) Discuss basic principle, theory and application of photoelectron spectroscopy.
- (b) Explain the following:
 - (i) Auger Electron Spectroscopy
 - (ii) Charge Transfer Spectra.

Unit-IV

- **4.** (a) Write short notes on the following:
 - (i) P, Q, R branches in IR Spectroscopy
 - (ii) Morse Potential Energy.
 - (b) Write short note on Rotational Raman Spectra.

Or

- (a) Discuss simple Harmonic Oscillator and Anharmonic Oscillator.
- (b) Describe the Raman Spectroscopy in terms of :
 - (i) Classical Theory of Raman effect
 - (ii) Rule of Mutual Exclusion.

* * * * * * * * * *