G-3/377/22

Roll No.

III Semester Examination, January 2022

M.Sc.

MATHEMATICS

Paper II

(Partial Differential Equation and Mechanics-I)

Time: 3 Hours] Max. Marks: 80

Note: All questions are compulsory. Question Paper comprises of 3 Sections. Section A is objective type/multiple choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTIONA

 $1 \times 10 = 10$

(Objective Type/Multiple Choice Questions)

Choose the correct answer:

- 1. The differential equation satisfying the harmonic function is called:
 - (a) Laplace's equation
 - (b) Transport equation
 - (c) Heat equation
 - (d) Wave equation

- 2. In a dynamical system of N-particles with K constraint equation, the degree of freedom is:
 - (a) 3N + K
- (b) 3N K
- (c) 2N K
- (d) 2N + K
- **3.** A particle of mass *m* moves on a smooth plane then the Lagrange's equations are:
 - (a) $mx = F_x$ (b) $my = F_y$
 - (c) Both (a) and (b) (d) None of these
- **4.** For all $x, y \in U$, $x \ne y$, G(y, x) = G(x, y) is called :
 - (a) Poisson's formula for half space
 - (b) Symmetry of Green's function
 - (c) Derivation of Green's function
 - (d) Estimate on derivatives
- **5.** Euler's Lagrange equations are :
 - (a) u(x, a) = ax + f'(a)
 - (b) H (P, X) = q (P, X) PL (q(P X) X)
 - (c) $u_x(x, t) + H(D_u(x, t)) = 0$
 - (d) $-\frac{d}{ds} (D_q L(X(s), X(s)) + D_x L(X(s), X(s)) = 0$
- **6.** Which is called Poisson's Identity?
 - (a) [u + v, w] = [u, w] + [v, w]
 - (b) [u, (v, w)] + [v, (w, u)] + [w, (u, v)] = 0

G-3/377/22

- (c) [u, v, w] = [u, v] w + v [v, w]
- (d) $\frac{\partial}{\partial t}[u, v] = \left[\frac{\partial u}{\partial t}, v\right] + \left[u, \frac{\partial v}{\partial t}\right]$
- **7.** Solution for n = 1 of wave equation by spherical means is called:
 - (a) Kirchhoff's formula
 - (b) Poisson's formula
 - (c) D'Alemberts formula
 - (d) Cauchy's formula
- **8.** Attraction of a thin uniform spherical shell with mass *m* and radius a at point on its surface is :
 - (a) 0

(b) $\gamma \frac{M}{a^2}$

- (c) $\gamma \frac{M}{4a^2}$ (d) $\gamma \frac{M}{2a^2}$
- **9.** The law of Newtonian attraction are :
 - (a) $2\gamma k\rho$

- (b) $\gamma m\omega$
- (c) $F \propto \frac{m_1 m_2}{r^2}$ (d) $2\pi \gamma \rho k (1 \cos \alpha)$
- **10.** The Poisson's equation are :
 - (a) $\int_{S} NdS = -4\pi\gamma M$
 - (b) $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial u^2} + \frac{\partial^2 V}{\partial z^2} = 0$

G-3/377/22

P.T.O.

- (c) $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial u^2} + \frac{\partial^2 V}{\partial z^2} = -4\pi\gamma\rho$
- (d) None of the above

SECTION B

 $5 \times 4 = 20$

(Short Answer Type Questions)

Note: Answer the following questions.

Unit-I

1. State and prove mean value formula's for Laplace's equation.

Or

Derive the formula for non-homogeneous problem.

Unit-II

2. Write the solution of wave equation by spherical means.

Or

Write the solution for n = 1 D'Alembert formula.

Unit-III

3. There exist a constant C such that $|u(x, t)| \le \frac{c}{t^{1/2}}$ for all $x \in \mathbb{R}$, t > 0.

Or

Derive the formula for straightening the boundary.

G-3/377/22

Unit-IV

4. Derive the attraction of a circular cone.

Or

Find the shortest line on the surface of the sphere.

Unit-V

5. Show that the attraction of a uniform cylinder of hight h, radius a and density ρ at a point on its axis at a distance c from the end outside it is

$$2\pi\gamma\rho \left[h - \sqrt{a^2 + (c+h)^2} + \sqrt{a^2 + c^2}\right].$$

Or

Prove that a solid uniform hemisphere of radius a exerts no resultant attraction at a point on its arc at a distance from the centre given by the equation $12C^4 - 8a^3C + 3a^4 = 0$.

SECTION C

 $10 \times 5 = 50$

(Long Answer Type Questions)

Unit-I

1. State and prove Poisson's equation.

Or

Derive the fundamental solution of Laplace's equation.

Unit-II

2. Write the solution of non-homogeneous problem of heat equation.

Or

State and prove mean-value property of the heat equation.

Unit-III

3. State and prove derivation of Hamilton's ODE.

Or

Solve the Hamilton Jacobi equation.

Unit-IV

4. To find the attraction of uniform solid sphere at an external or internal point P.

Or

To find the attraction of a thin uniform rod AB on an external point P. Let k be the cross–section of ρ be the volume density of the rod.

Unit-V

5. State and prove Laplace's theorem.

Or

State and prove Gauss theorem.
